1. Nội dung câu hỏi
Biết rằng \(x{\log _5}4 = 1\). Tìm giá trị của biểu thức \({4^x} + {4^{ - x}}\).
2. Phương pháp giải
Sử dụng kiến thức về phép tính lôgarit để tính: Với \(a > 0,a \ne 1,N > 0,N \ne 1\) ta có: \({\log _a}N = \frac{1}{{{{\log }_N}a}}\)
3. Lời giải chi tiết
\(x{\log _5}4 = 1 \Rightarrow x = \frac{1}{{{{\log }_5}4}} = {\log _4}5\)
Do đó: \({4^x} + {4^{ - x}} = {4^{{{\log }_4}5}} + {4^{ - {{\log }_4}5}} = 5 + {5^{ - 1}} = 5\frac{1}{5}\).
Chuyên đề 1: Phân bón
Unit 1: A long and healthy life
Unit 6: Preserving our heritage
CHƯƠNG 8: DẪN XUẤT HALOGEN - ANCOL - PHENOL
Unit 5: Global warming
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11