1. Nội dung câu hỏi
Cho parabol (P) có phương trình \(y = {x^2}\). Tìm hệ số góc của tiếp tuyến của parabol (P)
a) Tại điểm \(\left( { - 1;1} \right)\);
b) Tại giao điểm của (P) với đường thẳng \(y = - 3x + 2\).
2. Phương pháp giải
Sử dụng kiến thức về ý nghĩa hình học của đạo hàm để tìm hệ số góc của tiếp tuyến:
Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\).
Tiếp tuyến \({M_0}T\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\).
3. Lời giải chi tiết
Với \({x_0}\) bất kì ta có:
\(y'\left( {{x_0}} \right) \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{y\left( x \right) - y\left( {{x_0}} \right)}}{{x - {x_0}}} \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + {x_0}} \right) = 2{x_0}\)
Do đó, \(y' = 2x\)
a) Hệ số góc của tiếp tuyến của parabol (P) tại điểm \(\left( { - 1;1} \right)\) là: \(y'\left( { - 1} \right) = 2.\left( { - 1} \right) = - 2\)
b) Hoành độ giao điểm của (P) với đường thẳng \(y = - 3x + 2\) là nghiệm của phương trình: \({x^2} = - 3x + 2 \) \( \Leftrightarrow {x^2} + 3x - 2 = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 3 + \sqrt {17} }}{2}\\x = \frac{{ - 3 - \sqrt {17} }}{2}\end{array} \right.\)
Do đó, \(k = y'\left( {\frac{{ - 3 + \sqrt {17} }}{2}} \right) = - 3 + \sqrt {17}\), \(k = y'\left( {\frac{{ - 3 - \sqrt {17} }}{2}} \right) = - 3 - \sqrt {17} \)
Vậy hệ số góc tại giao điểm của (P) với đường thẳng \(y = - 3x + 2\) là: \(k = - 3 + \sqrt {17} ;k = - 3 - \sqrt {17} \).
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Tiếng Anh lớp 11
Chủ đề 3. Công nghệ thức ăn chăn nuôi
Chuyên đề 3. Một số vấn đề về pháp luật dân sự
HÌNH HỌC- TOÁN 11 NÂNG CAO
Unit 4: Home
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11