1. Nội dung câu hỏi
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \(SA = a\sqrt 3 ,SA \bot AC,\) \(SA \bot BC,\) \(\widehat {BAD} = {120^0}\). Gọi M, N lần lượt là trung điểm của AD, BC. Tính góc giữa các cặp đường thẳng:
a) SD và BC.
b) MN và SC.
2. Phương pháp giải
Sử dụng kiến thức về góc giữa hai đường thẳng trong không gian để tính: Góc giữa hai đường thẳng a, b trong không gian, kí hiệu (a, b), là góc giữa hai đường thẳng \(a'\) và \(b'\) cùng đi qua một điểm và lần lượt song song hoặc trùng với a và b.
Góc giữa hai đường thẳng nhận giá trị từ \({0^0}\) đến \({90^0}\).
3. Lời giải chi tiết
a) Vì ABCD là hình thoi nên AD//BC. Do đó, \(\left( {SD,BC} \right) = \left( {SD,AD} \right) = \widehat {SDA}\)
Vì \(SA \bot BC,\) AD//BC nên \(SA \bot AD\). Do đó, tam giác SAD vuông tại A.
Do đó, \(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {SDA} = {60^0}\)
b) Vì M, N lần lượt là trung điểm của AD, BC nên MN//CD
Do đó, \(\left( {MN,SC} \right) = \left( {CD,SC} \right) = \widehat {SCD}\)
Áp dụng định lí Pythagore vào tam giác SAD vuông tại A có: \(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {3{a^2} + {a^2}} = 2a\)
Vì ABCD là hình thoi nên \(AD = DC\). Do đó, tam giác ACD cân tại D
Vì ABCD là hình thoi nên AC là tia phân giác góc BAD. Do đó, \(\widehat {DAC} = \frac{1}{2}\widehat {BAD} = {60^0}\)
Suy ra, tam giác ACD đều nên \(AC = a\)
Áp dụng định lí Pythagore vào tam giác SAC vuông tại A có: \(SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {3{a^2} + {a^2}} = 2a\)
Áp dụng định lý cosin vào tam giác SCD có:
\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2.SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4} \Rightarrow \widehat {SCD} \approx 75,{5^0}\).
Unit 12: Celebrations
Unit 10: Travel
CHƯƠNG VII: MẮT VÀ CÁC DỤNG CỤ QUANG
Review 4 (Units 9-10)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Toán lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11