SBT Toán 11 - Chân trời sáng tạo tập 2

Câu hỏi 2 - Mục Bài tập trang 55

1. Nội dung câu hỏi

Cho tứ diện ABCD có \(AB \bot CD\) và \(AC \bot BD\). Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD). Chứng minh rằng H là trực tâm của \(\Delta \)BCD. Và \(AD \bot BC\)


2. Phương pháp giải

Sử dụng kiến thức về định lí đường thẳng vuông góc với mặt phẳng để chứng minh: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng \(\left( \alpha  \right)\) thì \(d \bot \left( \alpha  \right)\). 

 

3. Lời giải chi tiết 

Vì H là hình chiếu vuông góc của A xuống mặt phẳng (BCD) nên \(AH \bot \left( {BCD} \right)\)

Mà \(CD,BD,BC \subset \left( {BCD} \right) \Rightarrow AH \bot CD,AH \bot BD,AH \bot BC\)

Vì \(AH \bot CD\), \(AB \bot CD\) nên \(CD \bot \left( {ABH} \right) \Rightarrow CD \bot BH\)

Vì \(AH \bot BD\), \(AC \bot BD\) nên \(BD \bot \left( {AHC} \right) \Rightarrow BD \bot HC\)

\(\Delta \)BCD có hai đường cao BH và CH cắt nhau tại H nên H là trực tâm của \(\Delta \)BCD.

Do đó, \(BC \bot DH\)

Lại có: \(AH \bot BC\) nên \(BC \bot \left( {ADH} \right)\). Mà \(AD \subset \left( {ADH} \right)\) nên \(BC \bot AD\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved