1. Nội dung câu hỏi
Dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\), biết \(\left\{ \begin{array}{l}{u_1} = - 2\\{u_{n + 1}} = - 2 - \frac{1}{{{u_n}}}\end{array} \right.\).
2. Phương pháp giải
Sử dụng kiến thức về cách xác định dãy số bằng công thức số hạng tổng quát \({u_n}\) để dự đoán số hạng tổng quát của dãy số: Tính một vài số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\) rồi từ đó dự đoán công thức \({u_n}\) theo n.
3. Lời giải chi tiết
Ta có: \({u_1} = - 2 = \frac{{ - 2}}{1};\)\({u_2} = - 2 - \frac{1}{{ - 2}} = \frac{{ - 3}}{2};\)\({u_3} = - 2 - \frac{1}{{\frac{{ - 3}}{2}}} = \frac{{ - 4}}{3};\)\({u_4} = - 2 - \frac{1}{{\frac{{ - 4}}{3}}} = \frac{{ - 5}}{4}\)
Do đó, dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là: \({u_n} = - \frac{{n + 1}}{n}\).
CHUYÊN ĐỀ 3: DOANH NHÂN TRONG LỊCH SỬ VIỆT NAM
Unit 3: Cities
Bài 1. Sự tương phản về trình độ phát triển kinh tế - xã hội của các nhóm nước. Cuộc cách mạng khoa học và công nghệ hiện đại - Tập bản đồ Địa lí 11
Unit 5: Global warming
Chủ đề 2. Vật liệu cơ khí
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11