1. Nội dung câu hỏi
Tìm các giới hạn sau:
a) \(\lim \frac{{2n - 3}}{{6n + 1}}\);
b) \(\lim \frac{{3n - 1}}{{{n^2} + n}}\);
c) \(\lim \frac{{\left( {2n - 1} \right)\left( {2n + 3} \right)}}{{2{n^2} + 4}}\);
d) \(\lim \frac{{4n + 1}}{{\sqrt {{n^2} + 3n} + n}}\);
e) \(\lim \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\);
g) \(\lim \frac{1}{{\sqrt {{n^2} + n} - n}}\).
2. Phương pháp giải
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {c.{u_n}} \right) = c.a\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số).
3. Lời giải chi tiết
a) \(\lim \frac{{2n - 3}}{{6n + 1}}\)\( = \lim \frac{{2 - \frac{3}{n}}}{{6 + \frac{1}{n}}}\)\( = \frac{{\lim 2 - \lim \frac{3}{n}}}{{\lim 6 + \lim \frac{1}{n}}}\)\( = \frac{{2 - 0}}{{6 + 0}} = \frac{1}{3}\);
b) \(\lim \frac{{3n - 1}}{{{n^2} + n}}\)\( = \lim \frac{{\frac{3}{n} - \frac{1}{{{n^2}}}}}{{1 + \frac{1}{n}}}\)\( = \frac{{\lim \frac{3}{n} - \lim \frac{1}{{{n^2}}}}}{{\lim 1 + \lim \frac{1}{n}}}\)\( = \frac{0}{{1 + 0}} = 0\);
c) \(\lim \frac{{\left( {2n - 1} \right)\left( {2n + 3} \right)}}{{2{n^2} + 4}}\)\( = \lim \frac{{\left( {2 - \frac{1}{n}} \right)\left( {2 + \frac{3}{n}} \right)}}{{2 + \frac{4}{{{n^2}}}}}\)\( = \frac{{\lim \left( {2 - \frac{1}{n}} \right)\lim \left( {2 + \frac{3}{n}} \right)}}{{\lim \left( {2 + \frac{4}{{{n^2}}}} \right)}}\)\( = \frac{{2.2}}{2} = 2\);
d) \(\lim \frac{{4n + 1}}{{\sqrt {{n^2} + 3n} + n}}\)\( = \lim \frac{{4 + \frac{1}{n}}}{{\sqrt {1 + \frac{3}{n}} + 1}}\)\( = \frac{{4 + \lim \frac{1}{n}}}{{\sqrt {1 + \lim \frac{3}{n}} + 1}}\)\( = \frac{4}{{1 + 1}} = 2\);
e) \(\lim \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\)\( = \lim \frac{{\sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\left( {\sqrt {n + 1} + \sqrt n } \right)}}{{\sqrt {n + 1} + \sqrt n }}\)\( = \lim \frac{{\sqrt n }}{{\sqrt {n + 1} + \sqrt n }}\)
\( = \lim \frac{1}{{\sqrt {1 + \frac{1}{n}} + \sqrt 1 }}\)\( = \frac{1}{{\sqrt {1 + \lim \frac{1}{n}} + 1}} = \frac{1}{2}\)
g) \(\lim \frac{1}{{\sqrt {{n^2} + n} - n}}\)\( = \lim \frac{{\sqrt {{n^2} + n} + n}}{{\left( {\sqrt {{n^2} + n} - n} \right)\left( {\sqrt {{n^2} + n} + n} \right)}}\)\( = \lim \frac{{\sqrt {{n^2} + n} + n}}{n}\)\( = \lim \frac{{\sqrt {1 + \frac{1}{n}} + 1}}{1}\)\( = \frac{{\sqrt {1 + \lim \frac{1}{n}} + 1}}{1} = 2\).
Chương 4. Kiểu dữ liệu có cấu trúc
Chuyên đề 1. Một số vấn đề về khu vực Đông Nam Á
CHƯƠNG IV. SINH SẢN - SINH HỌC 11 NÂNG CAO
Unit 3: Sustainable health
Tải 15 đề thi học kì 2 - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11