1. Nội dung câu hỏi
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Vẽ các đường cao BE, DF của tam giác BCD, đường cao DK của tam giác ACD.
a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC).
b) Gọi O và H là trực tâm \(\Delta BCD\) và \(\Delta ACD\). Chứng minh OH vuông góc với (ADC).
2. Phương pháp giải
+ Sử dụng kiến thức về điều kiện để hai mặt phẳng vuông góc: Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
+ Sử dụng kiến thức về tính chất cơ bản của hai mặt phẳng vuông góc: Nếu hai mặt phẳng cắt nhau cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng cũng vuông góc với mặt phẳng thứ ba.
3. Lời giải chi tiết
a) Vì AB là giao tuyến của hai mặt phẳng (ABC) và (ABD), hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC) nên \(AB \bot \left( {BCD} \right)\)\( \Rightarrow AB \bot CD\)
Mà \(BE \bot CD \Rightarrow CD \bot \left( {ABE} \right)\). Lại có: \(CD \subset \left( {ACD} \right) \Rightarrow \left( {ABE} \right) \bot \left( {ACD} \right)\)
Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot DF\), mà \(DF \bot BC \Rightarrow DF \bot \left( {ABC} \right) \Rightarrow DF \bot AC\)
Mà \(DK \bot AC \Rightarrow AC \bot \left( {DFK} \right)\). Lại có: \(AC \subset \left( {ADC} \right) \Rightarrow \left( {DFK} \right) \bot \left( {ADC} \right)\)
b) Vì O là giao điểm của hai đường cao BE và DF, H là giao điểm của hai đường cao AE và DK nên OH là giao tuyến của (ABE) và (DFK).
Mà \(\left( {ABE} \right) \bot \left( {ACD} \right),\left( {DFK} \right) \bot \left( {ADC} \right)\) và nên \(OH \bot \left( {ACD} \right)\).
Unit 7: Education options for school-leavers
Chuyên đề 2. Lí thuyết đồ thị
HÌNH HỌC SBT - TOÁN 11
Tải 10 đề kiểm tra 1 tiết - Chương 4
Chương II. Sóng
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11