Toán 7 tập 2 - Chân trời sáng tạo

Giải bài 2 trang 78 SGK Toán 7 tập 2 - Chân trời sáng tạo

Đề bài

Cho tam giác ABC vuông tại A. Trên tia BA lấy điểm M sao cho BM = BC. Tia phân giác của góc B cắt AC tại H. Chứng minh rằng MH vuông góc với BC.

 

 

Phương pháp giải - Xem chi tiết

- Ta chứng minh H là trực tâm của tam giác AMC

-  Từ đó ta chứng minh MH vuông góc với BC

 

 

Lời giải chi tiết

Gọi D giao điểm của tia phân giác của góc B và MC

Xét tam giác BDM và tam giác BDC có :

BD chung

\(\widehat {MBD} = \widehat {CBD}\) ( BD là phân giác của góc B)

BM = BC ( giả thiết )

( \Rightarrow \Delta BDM=\Delta BDC\)(c.g.c)

\( \Rightarrow \widehat {BDM} = \widehat {BDC}\)(2 góc tương ứng)

Mà 2 góc ở vị trí kề bù \( \Rightarrow \widehat {BDM} = \widehat {BDC} = {90^o} \Rightarrow BD \bot CM\)

Mà AC cắt BD tại H \( \Rightarrow \) H là trực tâm tam giác BMC

\( \Rightarrow \) MH là đường cao của tam giác BMC (định lí 3 đường cao đi qua trực tâm tam giác)

\( \Rightarrow \) MH vuông góc với BC

 
Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved