Đề bài
Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có:
a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \)
b) \(\overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {CB} - \overrightarrow {CD} \)
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc ba điểm \(\overrightarrow {AB} = \overrightarrow {AM} + \overrightarrow {MB} \) và phép trừ vectơ \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {CB} \)
Lời giải chi tiết
a) Sử dụng quy tắc ba điểm ta có:
\(\begin{array}{l}\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD} + \overrightarrow {DA} } \right)\\ = \overrightarrow {AC} + \overrightarrow {CA} = \overrightarrow {AA} = \overrightarrow 0 \end{array}\)
b) \(\begin{array}{l}\overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {DB} ;\overrightarrow {CB} - \overrightarrow {CD} = \overrightarrow {DB} \\ \Rightarrow \overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {CB} - \overrightarrow {CD} \end{array}\)
Chương 3. Thạch quyển
Chủ đề 3. Một số nền văn minh thế giới thời kì cổ - trung đại
Review (Units 5 - 6)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Ngữ văn lớp 10
Unit 7: Inventions
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10