HÌNH HỌC SBT - TOÁN 11

Bài 2.10 trang 67 SBT hình học 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho hình chóp \(S.ABCD\) có đáy là hình hình hành \(ABCD\). Tìm giao tuyến của các cặp mặt phẳng sau đây:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

\((SAC)\) và \((SBD)\)

Phương pháp giải:

Muốn tìm giao tuyến của hai mặt phẳng ta tìm hai điểm chung của chúng.

Lời giải chi tiết:

Ta có: \(S\in (SAC)\cap(SBD)\)

Gọi \(AC \cap BD = O\)

Mà \(AC\subset (SAC)\), \(BD\subset (SBD)\) \(\Rightarrow O\in (SAC)\cap(SBD)\)

\(\Rightarrow  (SAC) \cap (SBD) = SO\).

LG b

\((SAB)\) và \((SCD)\)

Phương pháp giải:

Cách tìm giao tuyến của hai mặt phẳng lần lượt chứa hai đường thẳng \(d\) và \(d’\) song song với nhau:

- Tìm điểm chung của hai mặt phẳng

- Giao tuyến của hai mặt phẳng là đường thẳng đi qua điểm chung và song song với \(d\) và \(d’\).

Lời giải chi tiết:

Ta có: \(S\in (SAB)\cap(SCD)\)

Ta lại có:

\(\left\{ \begin{array}{l}AB \subset (SAB)\\CD \subset (SCD)\\AB\parallel CD\end{array} \right.\)

\(\Rightarrow (SAB)\cap (SCD)=Sx,\)

\(Sx\parallel AB\parallel CD\).

LG c

\((SAD)\) và \((SBC)\).

Phương pháp giải:

Cách tìm giao tuyến của hai mặt phẳng lần lượt chứa hai đường thẳng \(d\) và \(d’\) song song với nhau:

- Tìm điểm chung của hai mặt phẳng

- Giao tuyến của hai mặt phẳng là đường thẳng đi qua điểm chung và song song với \(d\) và \(d’\).

Lời giải chi tiết:

Ta có: \(S\in (SAD)\cap(SBC)\)

Ta lại có:

\(\left\{ \begin{array}{l}AD \subset (SAD)\\BC \subset (SBC)\\AD\parallel BC\end{array} \right.\)

\(\Rightarrow (SAD)\cap (SBC)=Sy,\)

\(Sy\parallel AD\parallel BC\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved