1. Nội dung câu hỏi
Một bức tường trang trí có dạng hình thang, rộng 2,4m ở đáy và rộng 1,2m ở đỉnh (hình vẽ bên). Các viên gạch hình vuông có kích thước \(10cm \times 10cm\) phải được đặt sao cho mỗi hàng ở phía trên chứa ít hơn một viên so với hàng ở ngay phía dưới nó. Hỏi sẽ cần bao nhiêu viên gạch hình vuông như vậy để ốp hết bức tường?
2. Phương pháp giải
Sử dụng kiến thức về cấp số cộng:
+ Nếu cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d thì số hạng tổng quát \({u_n}\) được xác định theo công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d\)
+ Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai d. Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Khi đó, \({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\)
3. Lời giải chi tiết
Đổi \(2,4m = 240cm,1,2m = 120cm\)
Số viên gạch ở hàng đầu tiên (ứng với đáy lớn là) \({u_1} = 240:10 = 24\)
Số gạch ở hàng trên cùng (ứng với đáy nhỏ) là: \({u_n} = 120:10 = 12\)
Vì mỗi hàng ở phía trên chứa ít hơn một viên so với hàng ở ngay phía dưới nó nên ta thư được cấp số cộng có công sai \(d = - 1\)
Như vậy, \({u_n} = 12 = {u_1} + \left( {n - 1} \right)\left( { - 1} \right) \Rightarrow 12 = 24 - n + 1 \Rightarrow n = 13\)
Vậy số viên gạch hình vuông cần thiết để ốp hết bức tường đó là:
\({S_{13}} = \frac{{\left( {{u_1} + {u_{13}}} \right).13}}{2} = 234\) (viên gạch).
Review 1 (Units 1-3)
Bài 14: Arene (Hydrocarbon thơm)
CHƯƠNG 1: ĐIỆN TÍCH - ĐIỆN TRƯỜNG
Bài 3: pH của dung dịch. Chuẩn độ acid - base
Chuyên đề 2. Một số bệnh dịch ở người và cách phòng, chống
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11