Đề bài
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau:
a)
b) và b=c
c) và b=c
Phương pháp giải - Xem chi tiết
- Dựng tâm hình cầu (giao điểm của trục đường tròn ngoại tiếp tam giác ABC và trung trực của đoạn thẳng SA)
- Tính bán kính dựa vào các kiến thức hình học đã biết.
Lời giải chi tiết
.
. Gọi M là trung điểm của BC, ta có MA = MB = MC. Dựng đường thẳng d vuông góc với mặt phẳng (ABC) tại M. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có OS = OA = OB = OC
Và
Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có
b) và b = c, khi đó ABC là tam giác đều cạnh b. Gọi I là trọng tâm của tam giác đều nên I đồng thời cũng là tâm của đường tròn ngoại tiếp tam giác đều ABC. Dựng d là đường thẳng vuông góc với mặt phẳng (ABC) tại I. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có OS = OA = OB = OC và r2 = OA2 = OI2 + IA2
Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có
. Vậy
c) và b = c, khi đó ABC là một tam giác cân có góc A ở đỉnh bằng 1200 và cạnh bên bằng b. Gọi M là trung điểm của cạnh BC. Kéo dài AM một đoạn MK = AM, ta có KA = KB = KC = AB = AC = b.
Dựng đường thẳng d vuông góc với mặt phẳng (ABC) tại K. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có: OS = OA = OB = OC và r2=OA2=OK2+KA2=(a2)2+b2
Do đó ta có mặt cầu tâm O ngoại tiếp tứ diện và có bán kính r=√a24+b2
Đề kiểm tra giữa học kì I - Hóa học 12
Tải 10 đề kiểm tra 15 phút - Chương 9 – Hóa học 12
Bài 13. Thực hành: đọc bản đồ địa hình, điền vào lược đồ trống một số dãy núi và đỉnh núi
ĐỀ THI THỬ THPT QUỐC GIA MÔN ĐỊA LÍ
Unit 3: Ways Of Socialising - Các cách thức giao tiếp xã hội