Bài 2.18 trang 8 SBT Vật Lí 12

Đề bài

Một con lắc lò xo gồm một vật có khối lượng \(0,5kg\) gắn vào đầu tự do của một lò xo nhẹ có độ cứng \(20N/m\). Con lắc dao động theo trục \({\rm{Ox}}\) nằm ngang với biên độ dao động là \(3cm\). Tính:

a) Cơ năng của con lắc và tốc độ cực đại của vật.

b) Động năng và tốc độ cực đại của vật tại vị trí có li độ \(2,0cm\) 

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính động năng\({{\rm{W}}_d} = \dfrac{1}{2}k({A^2} - {x^2}) = \dfrac{1}{2}m{v^2}\), thế năng \({{\rm{W}}_t} = \dfrac{1}{2}k{x^2}\), cơ năng \({\rm{W}} = \dfrac{1}{2}k{A^2}\)

Lời giải chi tiết

Cơ năng của con lắc: \({\rm{W}} = \dfrac{1}{2}k{A^2} = \dfrac{1}{2}.20.0,{03^2} = {9.10^{ - 3}}J = 9mJ\)

Ta có: \({\rm{W}} = \dfrac{1}{2}mv_{\max }^2 \Rightarrow {v_{\max }} = \sqrt {\dfrac{{2W}}{m}}  = \sqrt {\dfrac{{{{2.9.10}^{ - 3}}}}{{0,5}}}  = 0.19m/s\)

b) Tại li độ \(x = 2cm\)

\({{\rm{W}}_d} = \dfrac{1}{2}k({A^2} - {x^2})\)

\( = \dfrac{1}{2}.20.(0,{03^2} - 0,02{}^2)\)

\( = {5.10^{ - 3}}J = 5mJ\)

Ta có \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\)

\( \Rightarrow v = \sqrt {\dfrac{{2{{\rm{W}}_d}}}{m}}\)

\(  = \sqrt {\dfrac{{{{2.5.10}^{ - 3}}}}{{0,5}}}  = 0,14(m/s)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved