Đề bài
Cho bất phương trình \(2x + 3y + 3 \le 5x + 2y + 3.\)
Bằng cách chuyển vế, hãy đưa bất phương trình trên về dạng tổng quát của bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ.
Phương pháp giải - Xem chi tiết
- Áp dụng quy tắc chuyển vế để đưa phương trình \(2x + 3y + 3 \le 5x + 2y + 3\) về dạng bất phương trình bậc nhất hai ẩn.
- Vẽ phương trình bậc nhất hai ẩn vừa tìm được.
- Xác định miền nghiệm của bất phương trình vừa tìm được.
Lời giải chi tiết
Xét bất phương trình:
\(\begin{array}{l}2x + 3y + 3 \le 5x + 2y + 3\\ \Leftrightarrow \,\,2x + 3y - 5x - 2y \le 3 - 3\\ \Leftrightarrow \,\, - 3x + y \le 0.\end{array}\)
Vẽ đường thẳng \(d: - 3x + y = 0\) trên mặt phẳng tọa độ \(Oxy.\)
Chọn điểm \(A\left( {1;1} \right)\) không thuộc đường thẳng \(d\) và thay vào biểu thức \( - 3x + y,\) ta được \( - 3.1 + 1 = - 2 < 0\).
Do đó, miền nghiệm của bất phương tình đã cho là nửa mặt phẳng bờ \(d\) và chứa điểm \(A\left( {1;1} \right)\)
Đề thi giữa kì 1
Bài 4. Phòng, chống vi phạm pháp luật về trật tự an toàn giao thông
Unit 2: Entertainment
Chủ đề 1. Máy tính và xã hội tri thức
Chủ đề 5. Tín dụng và cách sử dụng các dịch vụ tín dụng
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10