HÌNH HỌC SBT - TOÁN 11

Bài 2.2 trang 63 SBT hình học 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho hình chóp \(S.ABCD\) có đáy là tứ giác \(ABCD\) có hai cạnh đối diện không song song. Lấy điểm \(M\) thuộc miền trong của tam giác \(SCD\). Tìm giao tuyến của hai mặt phẳng:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

\((SBM)\) và \((SCD)\)

Phương pháp giải:

Muốn tìm giao tuyến của hai mặt phẳng ta tìm hai điểm chung của chúng.

Lời giải chi tiết:

Ta có \(S\), \(M\) là hai điểm chung mặt phẳng \((SBM)\) và \((SCD)\).

Vậy \((SBM) \cap (SCD) = SM\).


 

LG b

\((ABM)\) và \((SCD)\)

Phương pháp giải:

Muốn tìm giao tuyến của hai mặt phẳng ta tìm hai điểm chung của chúng.

- Điểm chung thứ nhất thường nhìn thấy luôn.

- Điểm chung thứ 2: tìm hai đường thẳng lần lượt thuộc hai mặt phẳng, đồng thời chúng lại thuộc mặt phẳng thứ ba và chúng không song song. Giao điểm của hai đường thẳng đó là điểm chung thứ hai. Trong bài này hai đường thẳng đó thuộc mặt phẳng đáy.

Lời giải chi tiết:

Ta có \(M\) là điểm chung thứ nhất

Gọi \(I = AB \cap CD\)

Khi đó \(I \in AB \Rightarrow I \in (ABM)\), \(I \in CD \Rightarrow I \in (SCD)\).

Do đó \(I\) là điểm chung thứ hai.

Vậy \((ABM) \cap (SCD) = IM\).

LG c

\((ABM)\) và \((SAC)\)

Phương pháp giải:

Muốn tìm giao tuyến của hai mặt phẳng ta tìm hai điểm chung của chúng.

- Điểm chung thứ nhất thường nhìn thấy luôn.

- Điểm chung thứ 2: tìm hai đường thẳng lần lượt thuộc hai mặt phẳng, đồng thời chúng lại thuộc mặt phẳng thứ ba và chúng không song song. Giao điểm của hai đường thẳng đó là điểm chung thứ hai. Trong bài này mặt phẳng \((ABM)=(ABIM)\), từ đó ta tìm được hai đường thẳng cần lấy giao.

Lời giải chi tiết:

Ta có \(A=(ABM) \cap (SAC)\)

Gọi \(J = IM \cap SC\).

Khi đó \(J \in IM \Rightarrow J \in (ABM)\) và \(J \in SC \Rightarrow J \in (SAC)\).

Do đó \(J \in (ABM) \cap (SAC)\)

Vậy \((ABM) \cap (SAC) = AJ\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved