1. Nội dung câu hỏi
Cho hình lăng trụ \(ABC \cdot A'B'C'\) có \(AA'B'C'\) là hình tứ diền đều cạnh bằng \(a\). Thể tích khối lăng trụ \(ABC \cdot A'B'C'\) bằng
A. \(\frac{{{a^3}\sqrt 2 }}{{12}}\).
B. \(\frac{{{a^3}\sqrt 2 }}{4}\).
C. \(\frac{{{a^3}\sqrt 6 }}{3}\).
D. \(\frac{{{a^3}\sqrt 6 }}{{12}}\).
2. Phương pháp giải
Gọi \(O\) là tâm đáy\(A'B'C'\),\(O\) là trọng tâm đáy\(A'B'C'\)
Suy \(AO \bot \left( {\;A'B'C'} \right)\)
Tính \(AO,\) diện tích tam giác \(A'B'C'\)
Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(V = AO.{S_{A'B'C'}}\)
3. Lời giải chi tiết
Do tứ diện \(AA'B'C'\) là hình tứ diện đều cạnh bằng \(a\).
Gọi \(O\) là tâm đáy\(A'B'C'\),\(O\) là trọng tâm đáy\(A'B'C'\)
\(A'M = \frac{{a\sqrt 3 }}{2};A'O = \frac{2}{3}A'M = \frac{{a\sqrt 3 }}{3}\)
Ta có \(AO \bot \left( {\;A'B'C'} \right) \Rightarrow AO = \sqrt {A{{A'}^2} - A'{O^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 6 }}{3}\)
Diện tích tam giác \(A'B'C':S = \frac{{{a^2}\sqrt 3 }}{4}\)
Thể tích khối lăng trụ \(ABC \cdot A'B'C'\) bằng \(V = AO.{S_{A'B'C'}} = \frac{{a\sqrt 6 }}{3}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 2 }}{4}\)
Chọn B.
Tải 20 đề kiểm tra 15 phút - Chương 4
Phần hai. CÔNG DÂN VỚI CÁC VẤN ĐỀ CHÍNH TRỊ XÃ HỘI
Phần một. Một số vấn đề về kinh tế - xã hội thế giới
Bài 15: Dẫn xuất halogen
Chủ đề 1: Cạnh tranh, cung, cầu trong kinh tế thị trường
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11