HÌNH HỌC SBT - TOÁN 11

Bài 2.21 trang 72 SBT hình học 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). \(M\) là một điểm di động trên đoạn \(AB\). Một mặt phẳng \(\left( \alpha  \right)\) đi qua \(M\) và song song với \(SA\) và \(BC\); \(\left( \alpha  \right)\) cắt \(SB, SC\) và \(CD\) lần lượt tại \(N, P\) và \(Q\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tứ giác \(MNPQ\) là hình gì?

Phương pháp giải:

- Sử dụng tính chất: Cho đường thẳng \(d\) song song với mặt phẳng \((\alpha)\). Nếu mặt phẳng \((\beta)\) chứa \(d\) và cắt \((\alpha)\) theo giao tuyến \(d’\) thì \(d’\parallel d\).

\(\begin{array}{l}\left\{ \begin{array}{l}d\parallel (\alpha )\\d \subset (\beta )\\(\alpha ) \cap (\beta ) = d'\end{array} \right.\\ \Rightarrow d\parallel d'\end{array}\)

Lời giải chi tiết:

Ta có:

\(\left\{ \begin{array}{l}(\alpha )\parallel SA\\SA \subset (SAB)\\(\alpha ) \cap (SAB) = MN\end{array} \right.\)

\(\Rightarrow MN\parallel SA\)

Ta có:

\(\left\{ \begin{array}{l}(\alpha )\parallel BC\\BC \subset (SBC)\\(\alpha ) \cap (SBC) = NP\end{array} \right. \Rightarrow NP\parallel BC\) \(\text{(1)}\)

Ta có:

\(\left\{ \begin{array}{l}(\alpha )\parallel BC\\BC \subset (ABCD)\\(\alpha ) \cap (ABCD) = MQ\end{array} \right.\)

\(\Rightarrow BC\parallel MQ\)

\(\text{(2)}\)

Từ \(\text{(1)}\) và \(\text{(2)}\) \(NP\parallel QM\parallel BC\)

\(\Rightarrow MNPQ\) là hình thang có hai đáy là \(NP, QM\).

 

LG b

Gọi \(I\) là giao điểm của \(MN\) và \(PQ\). Chứng minh rằng \(I\) nằm trên một đường thẳng cố định

Phương pháp giải:

Sử dụng tính chất: Nếu hai mặt phẳng \((\alpha)\) và \((\beta)\) có điểm chung \(S\) và lần lượt chứa hai đường thẳng song song \(d\) và \(d’\) thì giao tuyến của \((\alpha)\) và \((\beta)\) là đường thẳng \(\Delta\) đi qua \(S\) và song song với \(d\) và \(d’\).

Sử dụng tính chất nếu hai mặt phẳng có một điểm chung thì chúng sẽ có một đường thẳng chung đi qua điểm chung ấy. Đường thẳng chung đó ấy hay còn gọi là giao tuyến.

Lời giải chi tiết:

Ta có:

\(\left\{ \begin{array}{l}S \in (SAB) \cap (SCD)\\AB \subset (SAB),CD \subset (SCD)\\AB\parallel CD\end{array} \right. \)

\(\Rightarrow (SAB) \cap (SCD) = Sx\);

\(Sx\parallel AB\parallel CD\)

Ta có: \(I=MN\cap PQ\)

\(\Rightarrow I\in MN, MN\subset (SAB)\)

\(\Rightarrow I\in (SAB)\).

Và \(PQ\subset (SCD)\Rightarrow I\in (SCD)\).

\(\Rightarrow I\in (SAB)\cap (SCD)\)

\(\Rightarrow I\in Sx\).

Do \((SAB)\) và \((SCD)\) cố định \(\Rightarrow AB, CD\) cố định

\(Sx\parallel AB\parallel CD\Rightarrow Sx\) cố định

\(I\in Sx\Rightarrow I\) cố định.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved