Đề bài
Chứng minh rằng với mọi số tự nhiên \(n \ge 2\), ta có \({5^n} \ge {3^n} + {4^n}\)
Lời giải chi tiết
Ta chứng minh bằng phương pháp quy nạp
Với \(n = 2\) ta có \({5^2} = {3^2} + {4^2}\)
Vậy BĐT đúng với \(n = 2\)
Giải sử BĐT đúng với \(n = k\) tức là ta có \({5^k} \ge {3^k} + {4^k}\)
Ta chứng minh BĐT đúng với \(n = k + 1\) tức là chứng minh \({5^{k + 1}} \ge {3^{k + 1}} + {4^{k + 1}}\)
Thật vậy, ta có
\({3^{k + 1}} + {4^{k + 1}} = {3.3^k} + {4.4^k} \le 4.\left( {{3^k} + {4^k}} \right) \le {4.5^k} \le {5.5^k} = {5^{k + 1}}\)
Vậy BĐT đúng với mọi số tự nhiên \(n \ge 2\).
Chương 4. Ba định luật Newton. Một số lực trong thực tiễn
Unit 5: Inventions
CLIL
Chương I. Lịch sử và sử học, vai trò của sử học
Môn cầu lông
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10