1. Nội dung câu hỏi
Tính các tổng sau:
a) \(1 + 4 + 16 + 64 + ... + {4^9}\)
b) \(\frac{1}{3} + \frac{2}{3} + \frac{{{2^2}}}{3} + ... + \frac{{{2^{12}}}}{3}\)
2. Phương pháp giải
Cho cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q \ne 1\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Khi đó, \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\)
3. Lời giải chi tiết
a) Ta nhận thấy các số hạng của tổng là cấp số nhân với \({u_1} = 1,\) công bội \(q = 4\) và có 10 số hạng. Vậy \(1 + 4 + 16 + 64 + ... + {4^9} = 1.\frac{{1 - {4^{10}}}}{{1 - 4}} = 349\;525\)
b) Ta nhận thấy các số hạng của tổng là cấp số nhân với \({u_1} = \frac{1}{3},\) công bội \(q = 2\) và có 13 số hạng. Vậy \(\frac{1}{3} + \frac{2}{3} + \frac{{{2^2}}}{3} + ... + \frac{{{2^{12}}}}{3} = \frac{1}{3}.\frac{{1 - {2^{13}}}}{{1 - 2}} = \frac{{8\;191}}{3}\).
Chương 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
Chủ đề 1. Dao động
Bài 11: Tiết 1: Tự nhiên, dân cư và xã hội khu vực Đông Nam Á - Tập bản đồ Địa lí 11
Chủ đề 5: Kĩ thuật đánh đầu
Bài 8. Lợi dụng địa hình, địa vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11