Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Cho hình lăng trụ tam giác \(ABC.A’B’C’\) có các cạnh bên là \(AA’\), \(BB’\), \(CC’\). Gọi \(I\) và \(I’\) tương ứng là trung điểm của hai cạnh \(BC\) và \(B’C’\).
LG a
Chứng minh rằng \(AI\parallel A'I'\).
Phương pháp giải:
Sử dụng tính chất đường trung bình của hình bình hành.
Tính chất hình bình hành.
Lời giải chi tiết:
Trong hình bình hành \(BB’C’C\) ta có \(I, I’\) lần lượt là trung điểm của \(BC, B'C'\) nên \(II’\) là đường trung bình của hình bình hành \(BB’C’C\).
Suy ra \(II’\parallel = BB’\), mà \(AA’\parallel = BB’\) nên \(II’\parallel =AA’\).
Vậy tứ giác \(AA’I’I\) là hình bình hành nên \(AI\parallel A’I’\).
LG b
Tìm giao điểm của \(IA’\) với mặt phẳng \((AB’C’)\).
Phương pháp giải:
Muốn tìm giao điểm của đường thẳng \(d\) với mặt phẳng \((\alpha)\) ta tìm giao điểm của đường thẳng \(d\) với đường thẳng \(d’\), trong đó \(d’\subset (\alpha)\) và \(d,d’\) cùng thuộc một mặt phẳng.
Lời giải chi tiết:
Ta có: \(\left\{ \begin{array}{l}A \in \left( {AB'C'} \right)\\A \in \left( {AA'I'I} \right)\end{array} \right.\) \( \Rightarrow A \in \left( {AB'C'} \right) \cap \left( {AA'I'I} \right)\)
Tương tự : \(\left\{ \begin{array}{l}I' \in B'C' \subset \left( {AB'C'} \right)\\I' \in \left( {AA'I'I} \right)\end{array} \right.\) \( \Rightarrow I' \in \left( {AB'C'} \right) \cap \left( {AA'I'I} \right)\)
⇒ (AB′C′) ∩ (AA′I′I) = AI′
Gọi AI′ ∩ A′I = E. Ta có:
\(\left\{ \begin{array}{l}E \in A'I\\E \in AI' \subset \left( {AB'C'} \right)\end{array} \right.\) \( \Rightarrow E = A'I \cap \left( {AB'C'} \right)\)
Vậy E là giao điểm của A’I và mặt phẳng (AB’C’).
LG c
Tìm giao tuyến của \((AB’C’)\) và \((A’BC)\)
Phương pháp giải:
Sử dụng tính chất nếu hai mặt phẳng \((\alpha)\) và \((\beta)\) có điểm chung \(S\) và lần lượt chứa hai đường thẳng song song \(d\) và \(d’\) thì giao tuyến của \((\alpha)\) và \((\beta)\) là đường thẳng \(\Delta\) đi qua \(S\) và song song với \(d\) và \(d’\).
Sử dụng tính chất của hình bình hành.
Sử dụng định lý Talet.
Lời giải chi tiết:
Trong (ABB’A’), gọi \(A'B \cap AB' = M\)\( \Rightarrow \left\{ \begin{array}{l}M \in A'B \subset \left( {A'BC} \right)\\M \in AB' \subset \left( {AB'C'} \right)\end{array} \right.\) \( \Rightarrow M \in \left( {A'BC} \right) \cap \left( {AB'C'} \right)\)
Trong (ACC’A’) gọi \(A'C \cap AC' = N\)\( \Rightarrow \left\{ \begin{array}{l}N \in A'C \subset \left( {A'BC} \right)\\N \in AC' \subset \left( {AB'C'} \right)\end{array} \right.\) \( \Rightarrow N \in \left( {A'BC} \right) \cap \left( {AB'C'} \right)\)
Vậy (AB′C′) ∩ (A′BC) = MN.
Cách lập luận khác:
Ta có \( A’I\cap (AB’C’)=E\) mà \(A’I\subset (A’BC)\) \(\Rightarrow E\in (A’BC)\cap (AB’C’)\).
Ta lại có \((A’BC), (AB’C’)\) lần lượt có hai đường thẳng \(BC\parallel B’C’\)
Suy ra \((A’BC)\cap (AB’C’)=Ex\), \(Ex\parallel BC\parallel B’C’\).
Tứ giác \(AA’I’I\) là hình bình hành có hai đường chéo là \(A’I\) và \(AI’\) giao nhau tại \(E\) nên \(E\) là trung điểm mỗi đường.
Suy ra \(E\) là trung điểm của \(A’I\)
Tam giác \(A’BC\) có \(Ex\parallel BC\) và \(E\) là trung điểm của \(A’I\) nên \(Ex\cap A’B=M, Ex\cap A’C=N\) khi đó \(M\) là trung điểm của \(A’B\), \(N\) là trung điểm của \(A’C\).
Tứ giác \(A’ABB’\) và \(A’ACC’\) là hình bình hành có \(M\) \(N\) lần lượt là trung điểm của đường chéo nên cũng là trung điểm của đường chéo còn lại.
Suy ra \(MN\subset (AB’C’)\)
Suy ra \((AB’C’)\cap (A’BC)=MN\).
Chương III. Điện trường
Unit 15: Space Conquest - Cuộc chinh phục không gian
Review 4 (Units 9-10)
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Hello!
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11