1. Nội dung câu hỏi
Các cạnh của hình vuông ban đầu có chiều dài 16cm. Một hình vuông mới được hình thành bằng cách nối các điểm giữa của các cạnh của hình vuông ban đầu và hai trong số các hình tam giác kết quả được tô màu (hình vẽ dưới). Nếu quá trình này được lặp lại năm lần nữa, hãy xác định tổng diện tích của vùng được tô màu.
2. Phương pháp giải
+ Cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu là \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức \({u_n} = {u_1}.{q^{n - 1}}\) với \(n \ge 2\)
+ Cho cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q \ne 1\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Khi đó, \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\)
3. Lời giải chi tiết
Gọi \({u_n}\) là diện tích hai tam giác được tô màu ở lần thực hiện thứ n. Gọi a là độ dài cạnh của hình vuông ban đầu.
Ở lần 1 thì độ dài cạnh tam giác vuông cân là \(\frac{a}{2}\) nên \({u_1} = 2.\frac{1}{2}.\frac{a}{2}.\frac{a}{2} = \frac{{{a^2}}}{{{2^2}}}\) và độ dài của cạnh hình vuông sau đó là \(\frac{{a\sqrt 2 }}{2}\)
Ở lần 2 thì độ dài cạnh tam giác vuông cân là \(\frac{a}{2}.\frac{{\sqrt 2 }}{2}\) nên \({u_2} = \frac{{{a^2}}}{{{2^3}}}\)
Ở lần 3 thì độ dài cạnh tam giác vuông cân là \(\frac{a}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2}\) nên \({u_3} = \frac{{{a^2}}}{{{2^4}}}\)’
Như vậy, dãy số (\({u_n}\)) là cấp số nhân với \({u_1} = \frac{{{a^2}}}{4}\) và công bội \(q = \frac{1}{2}\)
Vậy tổng diện tích sau năm lần thực hiện là \({S_5} = {u_1} = \frac{{1 - {q^5}}}{{1 - q}} = 124\left( {c{m^2}} \right)\).
Chuyên đề 2. Truyền thông tin bằng sóng vô tuyến
Unit 10: Cities of the Future
Chương 2: Nitrogen và sulfur
Chương 9. Anđehit - Xeton - Axit Cacboxylic
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11