Cho a và b là các số dương. Đơn giản các biểu thức sau:
LG a
\( \dfrac{a^{\dfrac{4}{3}}\Big( a^{\dfrac{-1}{3}} + a^{\dfrac{2}{3}} \Big)} {a^{\dfrac{1}4}{\Big( a^{\dfrac{3}{4}} + a^{\dfrac{-1}{4}} \Big)}}\)
Phương pháp giải:
Sử dụng các công thức về tính chất của lũy thừa.
Lời giải chi tiết:
Với a và b là các số dương ta có:
\( \dfrac{a^{\dfrac{4}{3}}\Big( a^{\dfrac{-1}{3}} + a^{\dfrac{2}{3}} \Big)} {a^{\dfrac{1}{4}}\Big( a^{\dfrac{3}{4}} + a^{\dfrac{-1}{4}} \Big)}\)
\(= \dfrac{a^{\dfrac{4}{3}}. a^{\dfrac{-1}{3}} + a^{\dfrac{2}{3}}.a^{\dfrac{4}{3}} } {a^{\dfrac{1}{4}}. a^{\dfrac{3}{4}} + a^{\dfrac{1}{4}}. a^{\dfrac{-1}{4}}}\)
\(= \dfrac{a^1 + a^2}{a^1 + a^0} = \dfrac{a\Big( a + 1\Big)}{a + 1} =a \)
LG b
\( \dfrac{ a^{\dfrac{1}{3}}\sqrt{b} + b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} \)
Phương pháp giải:
Sử dụng các công thức về tính chất của lũy thừa.
Lời giải chi tiết:
\( \dfrac{ a^{\dfrac{1}{3}}\sqrt{b} + b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} \)
\(= \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{1}{2}} + b^{\dfrac{1}{3}}a^{\dfrac{1}{2}}}{ a^{\dfrac{1}{6}} + b^{\dfrac{1}{6}}}\)
\(= \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{1}{3}}\Big(b^{\dfrac{1}{2} - \dfrac{1}{3}}+ a^{\dfrac{1}{2} - \dfrac{1}{3}} \Big)}{a^{\dfrac{1}{6}} + b^{\dfrac{1}{6}}}\)
\(= \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{1}{3}}\Big(b^{\dfrac{1}{6}} +a^{ \dfrac{1}{6}} \Big)}{a^{\dfrac{1}{6}} + b^{\dfrac{1}{6}}}\)
\( = {a^{\frac{1}{3}}}{b^{\frac{1}{3}}} = {\left( {ab} \right)^{\frac{1}{3}}}\) \(=\sqrt[3]{ab} \)
LG c
\( \Big( \sqrt[3]{a} + \sqrt[3]{b} \Big)( a^{\dfrac{2}{3}} + b^{\dfrac{2}{3} }- \sqrt[3]{ab} \Big) \)
Phương pháp giải:
Sử dụng hằng đẳng thức \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} + {B^3}\)
Lời giải chi tiết:
\(\Big( \sqrt[3]{a} + \sqrt[3]{b} \Big)( a^{\frac{2}{3}} + b^{\frac{2}{3} }- \sqrt[3]{ab} \Big) \)
\(\begin{array}{l}
= \left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)\left( {{a^{\frac{2}{3}}} - \sqrt[3]{{ab}} + {b^{\frac{2}{3}}}} \right)\\
= \left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)\left( {{a^{\frac{2}{3}}} - {{\left( {ab} \right)}^{\frac{1}{3}}} + {b^{\frac{2}{3}}}} \right)
\end{array}\)
\(= \Big( a^{\frac{1}{3}} + b^{\frac{1}{3}}\Big) \Big( a^{\frac{2}{3}} - a^{\frac{1}{3}}. b^{\frac{1}{3}}+ b^{\frac{2}{3}}\Big)\)
\( = \left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)\left[ {{{\left( {{a^{\frac{1}{3}}}} \right)}^2} - {a^{\frac{1}{3}}}{b^{\frac{1}{3}}} + {{\left( {{b^{\frac{1}{3}}}} \right)}^2}} \right]\)
\(= {\Big( a^{\frac{1}{3}} \Big) }^{3} + {\Big( b^{\frac{1}{3}} \Big) }^{3}\)
\(= a + b\)
LG d
\(\Big( a^{\dfrac{1}{3}} + b^{\dfrac{1}{3}} \Big) : \Big( 2 + \sqrt[3]{\dfrac{a}{b}} + \sqrt[3]{\dfrac{b}{a}}\Big).\)
Phương pháp giải:
Quy đồng mẫu thức tổng trong ngoặc và rút gọn biểu thức.
Lời giải chi tiết:
\(\begin{array}{l}
= \left( {\sqrt[3]{a} + \sqrt[3]{b}} \right):\left( {2 + \frac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}} + \frac{{\sqrt[3]{b}}}{{\sqrt[3]{a}}}} \right)\\
= \left( {\sqrt[3]{a} + \sqrt[3]{b}} \right):\frac{{2\sqrt[3]{a}.\sqrt[3]{b} + {{\left( {\sqrt[3]{a}} \right)}^2} + {{\left( {\sqrt[3]{b}} \right)}^2}}}{{\sqrt[3]{{ab}}}}\\
= \left( {\sqrt[3]{a} + \sqrt[3]{b}} \right):\frac{{{{\left( {\sqrt[3]{a} + \sqrt[3]{b}} \right)}^2}}}{{\sqrt[3]{{ab}}}}\\
= \left( {\sqrt[3]{a} + \sqrt[3]{b}} \right).\frac{{\sqrt[3]{{ab}}}}{{{{\left( {\sqrt[3]{a} + \sqrt[3]{b}} \right)}^2}}}\\
= \frac{{\sqrt[3]{{ab}}}}{{\sqrt[3]{a} + \sqrt[3]{b}}}
\end{array}\)
Unit 12. Water Sports
Chương 7. Hạt nhân nguyên tử
ĐỀ THI THỬ THPT QUỐC GIA MÔN LỊCH SỬ
Bài 5. Quyền bình đẳng giữa các dân tộc, tôn giáo
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Tiếng Anh lớp 12