1. Nội dung câu hỏi
Cho hình hộp chữ nhật \(ABCD \cdot A'B'C'D'\) có \(AB = AD = a,AA' = a\sqrt 2 \). Thể tích khối tứ diện \(ACB'D'\) bằng
A. \(\frac{{{a^3}\sqrt 2 }}{3}\).
B. \(\frac{{{a^3}\sqrt 2 }}{6}\).
C. \(\frac{{{a^3}\sqrt 6 }}{3}\).
D. \(\frac{{{a^3}\sqrt 6 }}{6}\).
2. Phương pháp giải
Phân chia khối hộp chữ nhật thành 5 khối ta có
\({V_{ABCD.A\prime BC\prime D\prime }} = {V_{ACB\prime D\prime }} + {V_{B\prime .ABC}} + {V_{D\prime .ACD}} + {V_{A.A\prime B\prime D\prime }} + {V_{C.B\prime C\prime D\prime }}\)
Chứng minh \(V_{B\prime .ABC}^{} = \frac{1}{6}{V_{ABCD.A\prime BC\prime D\prime }}\)
Chứng minh tương tự ta có: \({V_{D\prime .ACD}} = {V_{A.A\prime B\prime D\prime }} = {V_{C.B\prime C\prime D\prime }} = \frac{1}{6}{V_{ABCD.A\prime BC\prime D\prime }}\)
Suy ra : \({V_{ACB\prime D\prime }} = \frac{1}{3}{V_{ABCD.A\prime BC\prime D\prime }}\)
Tính \({V_{ABCD.A\prime B\prime C\prime D\prime }}\)
Suy ra \({V_{ACB\prime D\prime }} = \frac{1}{3}{V_{ABCD.A\prime B\prime C\prime D\prime }} = \frac{1}{3}{a^3}\sqrt 2 \)
3. Lời giải chi tiết
Ta có: \({V_{ABCD.A\prime BC\prime D\prime }} = {V_{ACB\prime D\prime }} + {V_{B\prime .ABC}} + {V_{D\prime .ACD}} + {V_{A.A\prime B\prime D\prime }} + {V_{C.B\prime C\prime D\prime }}\)
Ta có: \(V_{B\prime .ABC}^{} = \frac{1}{3}d(B\prime ;(ABC)).{S_{\Delta ABC}} = \frac{1}{3}d(B\prime ;(ABCD)).\frac{1}{2}{S_{ABCD}} = \frac{1}{6}{V_{ABCD.A\prime BC\prime D\prime }}\)
Chứng minh tương tự ta có: \({V_{D\prime .ACD}} = {V_{A.A\prime B\prime D\prime }} = {V_{C.B\prime C\prime D\prime }} = \frac{1}{6}{V_{ABCD.A\prime BC\prime D\prime }}\)
Khi đó ta có:
\( = {V_{ACB\prime D\prime }} + 4.\frac{1}{6}{V_{ABCD.A\prime BC\prime D\prime }} \Leftrightarrow {V_{ACB\prime D\prime }} = \frac{1}{3}{V_{ABCD.A\prime BC\prime D\prime }}\)
\({V_{ABCD.A\prime B\prime C\prime D\prime }} = AB.AD.AA' = a.a.a\sqrt 2 = {a^3}\sqrt 2 \)
Vậy \({V_{ACB\prime D\prime }} = \frac{1}{3}{V_{ABCD.A\prime B\prime C\prime D\prime }} = \frac{1}{3}{a^3}\sqrt 2 \)
Chọn A.
CHƯƠNG VII - MẮT. CÁC DỤNG CỤ QUANG
Unit 6: High-flyers
Unit 6: Transitions
SGK Ngữ Văn 11 - Cánh Diều tập 1
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11