1. Nội dung câu hỏi
Nếu p, m và q lập thành một cấp số nhân thì dễ thấy \({m^2} = p.q.\) Số m được gọi là trung bình nhân của p và q. Cho hai số q và q, nếu ta tìm được k số khác \({m_1},{m_2},...,{m_k}\) sao cho \(p,{m_1},{m_2},...,{m_k},q\) lập thành một cấp số nhân, thì chúng ta nói rằng đã “chèn k trung bình nhân vào giữa p và q”. Hãy:
a) Chèn hai trung bình nhân vào giữa 3 và 24;
b) Chèn ba trung bình nhân vào giữa 2,25 và 576.
2. Phương pháp giải
Cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu là \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức \({u_n} = {u_1}.{q^{n - 1}}\) với \(n \ge 2\)
3. Lời giải chi tiết
a) Theo định nghĩa, chèn hai trung bình nhân vào giữa 3 và 24 ta được cấp số nhân có \({u_1} = 3\) và \({u_{2 + 2}} = {u_4} = 24\)
Theo tính chất của cấp số nhân ta có: \({u_4} = {u_1}.{q^3} \Rightarrow q = 2\)
Vậy chèn hai trung bình nhân vào giữa 3 và 24 ta được cấp số nhân là 3; 6; 12; 24.
b) Theo định nghĩa, chèn ba trung bình nhân vào giữa 2,25 và 576 ta được cấp số nhân có \({u_1} = 2,25\) và \({u_{2 + 3}} = {u_5} = 576\)
Theo tính chất của cấp số nhân ta có: \({u_5} = {u_1}.{q^4} \Rightarrow q = \pm 4\)
Với \(q = 4\), chèn ba trung bình nhân vào giữa 2,25 và 576 ta được cấp số nhân là 2,25; 9; 36; 144, 476.
Với \(q = - 4\), chèn ba trung bình nhân vào giữa 2,25 và 576 ta được cấp số nhân là 2,25; -9; 36; -144, 476.
CHƯƠNG 1: ĐIỆN TÍCH - ĐIỆN TRƯỜNG
Chuyên đề 1: Lịch sử nghệ thuật truyền thống Việt Nam
Tổng hợp từ vựng lớp 11 (Vocabulary) - Tất cả các Unit SGK Tiếng Anh 11 thí điểm
Unit 6: On the go
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11