1. Nội dung câu hỏi
Tìm tập xác định của các hàm số sau:
a) \(y = {\rm{lo}}{{\rm{g}}_3}\left( {x + 1} \right)\)
b) \(y = {\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left| {x - 1} \right|\)
2. Phương pháp giải
Hàm số lôgarit \(y = {\rm{lo}}{{\rm{g}}_a}u\left( x \right)\) xác định khi và chỉ khi \(a > 0;a \ne 1;u\left( x \right) > 0\)
Từ đó suy ra tập xác định của hàm số \(y = {\rm{lo}}{{\rm{g}}_a}u\left( x \right)\)
3. Lời giải chi tiết
a) Hàm số \(y = {\rm{lo}}{{\rm{g}}_3}\left( {x + 1} \right)\) xác định \( \Leftrightarrow x + 1 > 0 \Leftrightarrow x > - 1\)
Tập xác định của hàm số là \(\left( { - 1; + \infty } \right)\)
b) Ta có \(\left| {x - 1} \right| > 0,{\rm{\;}}\forall x \ne 1\)
Hàm số \(y = {\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left| {x - 1} \right|\) xác định \( \Leftrightarrow \left| {x - 1} \right| > 0 \Leftrightarrow x \ne - 1\)
Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).
Review 3
Grammar Expansion
Unit 16: The Wonders Of The World - Các kì quan của thế giới
SBT Toán 11 - Cánh Diều tập 2
Chuyên đề 3: Một số yếu tố vẽ kĩ thuật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11