1. Nội dung câu hỏi
Cho hàm số lôgarit \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_a}x\,\,\,\,(0 < a \ne 1)\). Chứng minh rằng:
a) \(f\left( {\frac{1}{x}} \right) = - f\left( x \right)\)
b) \(f\left( {{x^\alpha }} \right) = \alpha f\left( x \right)\)
2. Phương pháp giải
Áp dụng quy tắc tính lôgarit
Giả sử a là số thực dương khác \(1,\,M\) và \(N\) là các số thực dương, \(\alpha \) là số thực tuỳ ý.
\(\begin{array}{l}{\log _a}(MN) = {\log _a}M + {\log _a}N;\\{\log _a}\left( {\frac{M}{N}} \right) = {\log _a}M - {\log _a}N;{\log _a}\frac{1}{b} = {\log _a}1 - {\log _a}b = {\log _a}b\\{\log _a}{M^a} = \alpha {\log _a}M.\end{array}\)
3. Lời giải chi tiết
a) \(f\left( {\frac{1}{x}} \right) = {\rm{lo}}{{\rm{g}}_a}\frac{1}{x} = - {\rm{lo}}{{\rm{g}}_a}x = - f\left( x \right)\)
b) \(f\left( {{x^\alpha }} \right) = {\rm{lo}}{{\rm{g}}_a}{x^\alpha } = \alpha {\rm{lo}}{{\rm{g}}_a}x = \alpha f\left( x \right)\).
Đề thi học kì 1
Unit 8: Cities of the future
Unit 2: Leisure time
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Phần một: Giáo dục kinh tế
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11