Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Bài 2.30 trang 78 SBT hình học 11
Đề bài
Cho tứ diện \(ABCD\). Gọi \(I\) và \(J\) lần lượt là hai điểm di động trên các cạnh \(AD\) và \(BC\) sao cho \(\dfrac{IA}{ID} = \dfrac{JB}{JC}\). Chứng minh rằng \(IJ\) luôn luôn song song với một mặt phẳng cố định.
Phương pháp giải - Xem chi tiết
Sử dụng định lý talet.
Sử dụng tính chất: Nếu đường thẳng \(d\) không năm trong mặt phẳng \((\alpha)\) và \(d\) song song với đường thẳng \(d’\) nằm trong \((\alpha)\) thì \(d\) song song với \((\alpha)\).
\(\left\{ \begin{array}{l}d \not\subset (\alpha )\\d\parallel d'\\d' \subset (\alpha )\end{array} \right. \Rightarrow d\parallel (\alpha )\)
Sử dụng tính chất khi \((\alpha)\) song song với \((\beta)\) thì \((\alpha)\) sẽ song song với mọi đường thẳng nằm trong \((\beta)\).
Lời giải chi tiết
Qua \(I\) kẻ đường thẳng song song với \(CD\) cắt \(AC\) tại \(H\) nên ta có:
\(\dfrac{HA}{HC}=\dfrac{IA}{ID}\).
Mà \(\dfrac{IA}{ID}=\dfrac{JB}{JC}\).
Từ đó suy ra \(\dfrac{HA}{HC}=\dfrac{JB}{JC}\).
Theo định lý Talet suy ra \(HJ\parallel AB\) mà \(HJ\subset (IJH)\) \(\Rightarrow AB\parallel (IJH)\) \(\text{ (1)}\)
Theo cách dựng \(IH\parallel CD\), \(IH\subset (IJH)\) \(\Rightarrow CD\parallel (IJH)\) \(\text{ (2)}\)
Từ \(\text{(1)}\) và \(\text{(2)}\) suy ra \((IJH)\parallel AB, CD\).
Gọi \((\alpha)\) là mặt phẳng đi qua \(AB\) và song song với \(CD\).
Ta có:
\(\left\{ \begin{array}{l}(\alpha )\parallel ({\rm{IJ}}H)\\{\rm{IJ}} \subset ({\rm{IJ}}H)\end{array} \right. \Rightarrow {\rm{IJ}}\parallel (\alpha )\)
Vậy \(IJ\) song song với mặt phẳng \((\alpha)\) cố định.
A - KHÁI QUÁT NỀN KINH TẾ - XÃ HỘI THẾ GIỚI
HÌNH HỌC-SBT TOÁN 11 NÂNG CAO
Chương II. Sóng
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 11
Chủ đề 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11