Bài 2.32 trang 117 SBT giải tích 12

Đề bài

Tìm tập xác định của các hàm số sau:

a) \(\displaystyle y = {\log _8}\left( {{x^2} - 3x - 4} \right)\)

b) \(\displaystyle y = {\log _{\sqrt 3 }}\left( { - {x^2} + 5x + 6} \right)\)

c) \(\displaystyle y = {\log _{0,7}}\dfrac{{{x^2} - 9}}{{x + 5}}\)

d) \(\displaystyle y = {\log _{\frac{1}{3}}}\dfrac{{x - 4}}{{x + 4}}\)

e) \(\displaystyle y = {\log _\pi }\left( {{2^x} - 2} \right)\)

g) \(\displaystyle y = {\log _3}\left( {{3^{x - 1}} - 9} \right)\)

Phương pháp giải - Xem chi tiết

Hàm số \(\displaystyle y = {\log _a}f\left( x \right)\) xác định khi \(\displaystyle f\left( x \right)\) xác định và \(\displaystyle f\left( x \right) > 0\).

Lời giải chi tiết

a) ĐKXĐ: \(\displaystyle {x^2} - 3x - 4 > 0\) \(\displaystyle  \Leftrightarrow \left( {x + 1} \right)\left( {x - 4} \right) > 0\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x > 4\\x <  - 1\end{array} \right.\).

Vậy TXĐ \(\displaystyle D = \left( { - \infty ; - 1} \right) \cup \left( {4; + \infty } \right)\).

b) ĐKXĐ: \(\displaystyle  - {x^2} + 5x + 6 > 0\) \(\displaystyle  \Leftrightarrow \left( {x + 1} \right)\left( {6 - x} \right) > 0\) \(\displaystyle  \Leftrightarrow  - 1 < x < 6\).

Vậy TXĐ \(\displaystyle D = \left( { - 1;6} \right)\).

c) ĐKXĐ: \(\displaystyle \dfrac{{{x^2} - 9}}{{x + 5}} > 0\) \(\displaystyle  \Leftrightarrow \dfrac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{x + 5}} > 0\).

Xét dấu vế trái ta được:

Vậy TXĐ \(\displaystyle D = \left( { - 5; - 3} \right) \cup \left( {3; + \infty } \right)\).

d) ĐKXĐ: \(\displaystyle \dfrac{{x - 4}}{{x + 4}} > 0 \Leftrightarrow \left[ \begin{array}{l}x > 4\\x <  - 4\end{array} \right.\).

Vậy TXĐ: \(\displaystyle D = \left( { - \infty ; - 4} \right) \cup \left( {4; + \infty } \right)\).

e) ĐKXĐ: \(\displaystyle {2^x} - 2 > 0 \Leftrightarrow {2^x} > 2\) \(\displaystyle  \Leftrightarrow {2^x} > {2^1} \Leftrightarrow x > 1\).

Vậy TXĐ: \(\displaystyle D = \left( {1; + \infty } \right)\).

g) ĐKXĐ: \(\displaystyle {3^{x - 1}} - 9 > 0 \Leftrightarrow {3^{x - 1}} > 9\) \(\displaystyle  \Leftrightarrow {3^{x - 1}} > {3^2} \Leftrightarrow x - 1 > 2\) \(\displaystyle  \Leftrightarrow x > 3\).

Vậy TXĐ: \(\displaystyle D = \left( {3; + \infty } \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved