Bài 2.46 trang 124 SBT giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các phương trình mũ sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\(\displaystyle {(0,75)^{2x - 3}} = {\left( {1\frac{1}{3}} \right)^{5 - x}}\)

Phương pháp giải:

Sử dụng phương pháp đưa về cùng cơ số \(\displaystyle {a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\).

Lời giải chi tiết:

\(\displaystyle {\left( {\frac{3}{4}} \right)^{2x - 3}} = {\left( {\frac{4}{3}} \right)^{5 - x}} \) \(\Leftrightarrow {\left( {\frac{3}{4}} \right)^{2x - 3}} = {\left[ {{{\left( {\frac{3}{4}} \right)}^{ - 1}}} \right]^{5 - x}}\) \(\Leftrightarrow {\left( {\frac{3}{4}} \right)^{2x - 3}} = {\left( {\frac{3}{4}} \right)^{x - 5}}\)\(\displaystyle  \Leftrightarrow 2x - 3 = x - 5 \Leftrightarrow x =  - 2\)

LG b

\(\displaystyle {5^{{x^2} - 5x - 6}} = 1\)

Phương pháp giải:

Sử dụng phương pháp đưa về cùng cơ số \(\displaystyle {a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\).

Lời giải chi tiết:

\(\displaystyle {5^{{x^2} - 5x - 6}} = {5^0} \Leftrightarrow {x^2} - 5x - 6 = 0\)\(\displaystyle  \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 1}\\{x = 6}\end{array}} \right.\)

LG c

\(\displaystyle {\left( {\frac{1}{7}} \right)^{{x^2} - 2x - 3}} = {7^{x + 1}}\)

Phương pháp giải:

Sử dụng phương pháp đưa về cùng cơ số \(\displaystyle {a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\).

Lời giải chi tiết:

\(\displaystyle {\left( {\frac{1}{7}} \right)^{{x^2} - 2x - 3}} = {\left( {\frac{1}{7}} \right)^{ - x - 1}}\)\(\displaystyle  \Leftrightarrow {x^2} - 2x - 3 =  - x - 1\) \(\displaystyle  \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 1}\\{x = 2}\end{array}} \right.\)

LG d

\(\displaystyle {32^{\frac{{x + 5}}{{x - 7}}}} = 0,{25.125^{\frac{{x + 17}}{{x - 3}}}}\)

Phương pháp giải:

Logarit cơ số \(\displaystyle 2\) cả hai vế và giải phương trình.

Lời giải chi tiết:

\(\displaystyle {32^{\frac{{x + 5}}{{x - 7}}}} = 0,{25.125^{\frac{{x + 17}}{{x - 3}}}}\)

\(\begin{array}{l}
\Leftrightarrow {\left( {{2^5}} \right)^{\frac{{x + 5}}{{x - 7}}}} = \frac{1}{4}.{\left( {{5^3}} \right)^{\frac{{x + 17}}{{x - 3}}}}\\
\Leftrightarrow {4.2^{5.\frac{{x + 5}}{{x - 7}}}} = {5^{3.\frac{{x + 17}}{{x - 3}}}}\\
\Leftrightarrow {2^2}{.2^{\frac{{5x + 25}}{{x - 7}}}} = {5^{\frac{{3x + 51}}{{x - 3}}}}\\
\Leftrightarrow {2^{2 + \frac{{5x + 25}}{{x - 7}}}} = {5^{\frac{{3x + 51}}{{x - 3}}}}
\end{array}\)

\(\displaystyle  \Leftrightarrow {2^{\frac{{7x + 11}}{{x - 7}}}} = {5^{\frac{{3x + 51}}{{x - 3}}}}\)

Lấy logarit cơ số 2 cả hai vế, ta được:

\({\log _2}\left( {{2^{\frac{{7x + 11}}{{x - 7}}}}} \right) = {\log _2}\left( {{5^{\frac{{3x + 51}}{{x - 3}}}}} \right)\)

\(\displaystyle \Leftrightarrow \frac{{7x + 11}}{{x - 7}} = \frac{{3x + 51}}{{x - 3}}{\log _2}5\)

\(\Rightarrow \left( {7x + 11} \right)\left( {x - 3} \right) \) \(= \left( {3x + 51} \right)\left( {x - 7} \right){\log _2}5\)

\(\displaystyle  \Leftrightarrow 7{x^2} - 10x - 33\)\(\displaystyle  = (3{x^2} + 30x - 357){\log _2}5\)  (với \(\displaystyle x \ne 7,x \ne 3\))

\(\displaystyle  \Leftrightarrow (7 - 3{\log _2}5){x^2} - 2(5 + 15{\log _2}5)x\)\(\displaystyle  - (33 - 357{\log _2}5) = 0\)

Ta có: \(\displaystyle \Delta ' = {(5 + 15{\log _2}5)^2}\)\(\displaystyle  + (7 - 3{\log _2}5)(33 - 357{\log _2}5)\)\(\displaystyle  = 1296\log _2^25 - 2448{\log _2}5 + 256 > 0\)

Phương trình đã cho có hai nghiệm: \(\displaystyle x = \frac{{5 + 15{{\log }_2}5 \pm \sqrt {\Delta '} }}{{7 - 3{{\log }_2}5}}\), đều thỏa mãn điều kiện \(\displaystyle x \ne 7,x \ne 3\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved