ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 2.46 trang 82 SBT đại số và giải tích 11

Đề bài

Một hộp bi \(30\) viên trong đó có \(10\) viên bi đỏ và \(20\) bi xanh. Lấy từ hộp ra 2 viên bi. Biến cố \(F\) là trong \(2\) bi lấy ra có ít nhất \(1\) viên bi xanh. Số kết quả của không gian mẫu và số kết quả thuận lợi cho biến cố \(F\) tương ứng là:

A. \(435;150\)                 B. \(435; 200\)

C. \(435;390\)                 D. \(415;390\)

Phương pháp giải - Xem chi tiết

Không gian mẫu là phép thử lấy ra \(2\) viên bi trong hộp \(30\) sử dụng tổ hợp.

Biến cố \(F\) là biến cố trong hai viên bi lấy ra có ít nhất một viên bi xanh nên bài này ta không tính trực tiếp mà tính gián tiếp. Biến cố đối \(\overline F\) là biến cố trong hai viên bi lấy ra không có viên bi xanh nào. Lấy ra \(2\) viên bi toàn đỏ trong \(10\) viên bi đỏ ta dùng tổ hợp. Sử dụng hệ quả: Với mọi biến cố \(A\) ta có \(n(\overline{A})=n(\Omega)-n(A)\).

Lời giải chi tiết

Số phần tử của không gian mẫu là số cách chọn ra \(2\) viên bi trong \(30\) viên bi là \(n(\Omega)=C_{30}^2=435\) phần tử.

Gọi \(\overline{F}\) là biến cố đối của \(F\), \(\overline F\) là lấy ra toàn bi đỏ nên số phần tử của \(\overline{F}\) là \(n(\overline F)=C_ {10}^2=45\)

Dó đó số phần tử của biến cố \(F\) là \(n(F)=n(\Omega)-n(\overline F)\)

\(=435-45\)\(=390\) phần tử.

Đáp án: C.

Chú ý:

Số phần tử của biến cố F có thể được tính trực tiếp như sau:

TH1: Lấy ra 1 bi xanh và 1 bi đỏ có \(C_{20}^1.C_{10}^1\) cách.

TH1: Lấy ra 2 bi xanh và 0 bi đỏ có \(C_{20}^2.C_{10}^0=C_{20}^2 \) cách.

Vậy \(n\left( F \right) = C_{20}^1.C_{10}^1 + C_{20}^2 = 390\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved