Bài 2.49 trang 125 SBT giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các phương trình logarit :

a) \(\displaystyle {\log _2}({2^x} + 1).{\log _2}({2^{x + 1}} + 2) = 2\)

b) \(\displaystyle {x^{\log 9}} + {9^{\log x}} = 6\)

c) \(\displaystyle {x^{3{{\log }^3}x - \frac{2}{3}\log x}} = 100\sqrt[3]{{10}}\)

d) \(\displaystyle 1 + 2{\log _{x + 2}}5 = {\log _5}(x + 2)\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\(\displaystyle {\log _2}({2^x} + 1).{\log _2}({2^{x + 1}} + 2) = 2\)

Phương pháp giải:

- Đặt ẩn phụ \(\displaystyle t = {\log _2}({2^x} + 1)\).

- Biến đổi phương trình về bậc hai ẩn \(\displaystyle t\).

- Giải phương trình và suy ra nghiệm.

Lời giải chi tiết:

\(PT\Leftrightarrow {\log _2}\left( {{2^x} + 1} \right) . {\log _2}\left( {{{2.2}^x} + 2} \right) = 2\)

\(\displaystyle \Leftrightarrow  {\log _2}({2^x} + 1).{\log _2}\left[ {2({2^x} + 1)} \right] = 2\)

\( \Leftrightarrow {\log _2}\left( {{2^x} + 1} \right).\left[ {{{\log }_2}2 + {{\log }_2}\left( {{2^x} + 1} \right)} \right] = 2\)

\(\displaystyle  \Leftrightarrow {\log _2}({2^x} + 1).\left[ {1 + {{\log }_2}({2^x} + 1)} \right] = 2\)

Đặt \(\displaystyle t = {\log _2}({2^x} + 1)\), ta có phương trình \(\displaystyle t\left( {1 + t} \right) = 2\; \Leftrightarrow {t^2} + t - 2 = 0\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 2\end{array} \right.\)

\(\displaystyle  \Rightarrow \left[ \begin{array}{l}{\log _2}({2^x} + 1) = 1\\{\log _2}({2^x} + 1) =  - 2\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}{2^x} + 1 = 2\\{2^x} + 1 = \frac{1}{4}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} =  - \frac{3}{4}(l)\end{array} \right.\)\(\displaystyle  \Leftrightarrow x = 0\)

LG b

\(\displaystyle {x^{\log 9}} + {9^{\log x}} = 6\)

Phương pháp giải:

- Tìm ĐKXĐ.

- Thu gọn phương trình và đặt \(\displaystyle t = {x^{\log 9}}\).

- Giải phương trình ẩn \(\displaystyle t\) và kết luận nghiệm.

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\).

Ta có: \(\displaystyle \log ({x^{\log 9}}) = \log 9.\log x\) và \(\displaystyle \log ({9^{\log x}}) = \log x.\log 9\)

Nên \(\displaystyle \log ({x^{\log 9}}) = \log ({9^{\log x}})\) suy ra \(\displaystyle {x^{\log 9}} = {9^{\log x}}\)

Đặt \(\displaystyle t = {x^{\log 9}}\), ta được phương trình \(\displaystyle 2t = 6 \Leftrightarrow t = 3\) \(\displaystyle  \Leftrightarrow {x^{\log 9}} = 3\)

\(\displaystyle  \Leftrightarrow \log ({x^{\log 9}}) = \log 3\)\(\displaystyle  \Leftrightarrow \log 9.\log x = \log 3\)

\(\displaystyle  \Leftrightarrow \log x = \frac{{\log 3}}{{\log 9}} = \frac{{\log 3}}{{\log {3^2}}} = \frac{{\log 3}}{{2\log 3}}\)\(\displaystyle  \Leftrightarrow \log x = \frac{1}{2}\)

\(\displaystyle  \Leftrightarrow x = \sqrt {10} \)  (thỏa mãn điều kiện \(\displaystyle x > 0\))

LG c

\(\displaystyle {x^{3{{\log }^3}x - \frac{2}{3}\log x}} = 100\sqrt[3]{{10}}\)

Phương pháp giải:

Logarit cơ số \(\displaystyle 10\) cả hai vế, đặt ẩn phụ \(\displaystyle t = \log x\) và giải phương trình.

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\).

Lấy logarit thập phân hai vế của phương trình đã cho, ta được:

\(\begin{array}{l}
\log \left[ {{x^{3{{\log }^3}x - \frac{2}{3}\log x}}} \right] = \log \left( {100\sqrt[3]{{10}}} \right)\\
\Leftrightarrow \left( {3{{\log }^3}x - \frac{2}{3}\log x} \right)\log x = \log \left( {{{10}^2}{{.10}^{\frac{1}{3}}}} \right)\\
\Leftrightarrow \left( {3{{\log }^3}x - \frac{2}{3}\log x} \right)\log x = \log {10^{\frac{7}{3}}}
\end{array}\)

\(\displaystyle \Leftrightarrow (3{\log ^3}x - \frac{2}{3}\log x).\log x = \frac{7}{3}\)

\( \Leftrightarrow 3{\log ^4}x - \frac{2}{3}{\log ^2}x - \frac{7}{3} = 0\)

Đặt \(\displaystyle t = \log x\), ta được phương trình \(\displaystyle 3{t^4} - \frac{2}{3}{t^2} - \frac{7}{3} = 0\)

\(\displaystyle  \Leftrightarrow 9{t^4} - 2{t^2} - 7 = 0\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}{t^2} = 1\\{t^2} =  - \frac{7}{9}(l)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 1\end{array} \right.\) \(\displaystyle  \Rightarrow \left[ \begin{array}{l}\log x = 1\\\log x =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = \frac{1}{{10}}\end{array} \right.\).

LG d

\(\displaystyle 1 + 2{\log _{x + 2}}5 = {\log _5}(x + 2)\)

Phương pháp giải:

Đặt ẩn phụ \(\displaystyle t = {\log _5}(x + 2)\), giải phương trình ẩn \(\displaystyle t\) và suy ra nghiệm.

Lời giải chi tiết:

ĐK: \(\left\{ \begin{array}{l}x + 2 > 0\\x + 2 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 2\\x \ne - 1\end{array} \right.\)

Đặt \(\displaystyle t = {\log _5}(x + 2)\Leftrightarrow x + 2 = {5^t}\) ta có:

\(\begin{array}{l}
1 + 2{\log _{{5^t}}}5 = t\\
\Leftrightarrow 1 + \frac{2}{t}{\log _5}5 = t
\end{array}\)

\(\displaystyle \Leftrightarrow 1 + \frac{2}{t} = t\)\(\displaystyle  \Leftrightarrow {t^2} - t - 2 = 0,t \ne 0\)

\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\log _5}(x + 2) =  - 1\\{\log _5}(x + 2) = 2\end{array} \right.\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x + 2 = \frac{1}{5}\\x + 2 = 25\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{9}{5}\\x = 23\end{array}(TM) \right.\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved