Câu hỏi 25 - Mục Bài tập trang 18

1. Nội dung câu hỏi

Chứng minh biểu thức \(B = {x^5} - 15{x^2} - x + 5\) chia hết cho 5 với mọi số nguyên \(x\)

 

2. Phương pháp giải

Áp dụng các phương pháp phân tích đa thức thành nhân tử bằng cách nhóm số hạng và đặt nhân tử chung

 

3. Lời giải chi tiết

Trước hết, ta chứng minh \({x^5} - x \vdots 5\)

Ta có: \({x^5} - x = x\left( {{x^4} - 1} \right) = x\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right) = x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)\)

Nếu \(x = 5k\) thì \(x \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^5} - x \vdots 5\)

Nếu \(x = 5k + 1\) thì \(x - 1 = 5k \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)

Nếu \(x = 5k + 2\) thì \({x^2} + 1 = {\left( {5k + 2} \right)^2} + 1 = 25{k^2} + 20k + 5 \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)

Nếu \(x = 5k + 3\) thì \({x^2} + 1 = {\left( {5k + 3} \right)^2} + 1 = 25{k^2} + 30k + 10 \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)

Nếu \(x = 5k + 4\) thì \(x + 1 = 5k + 5 \vdots 5\)

Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)

Do đó \({x^5} - x \vdots 5\) với mọi số nguyên \(x\)

Ta có: \({x^5} - x \vdots 5;15{x^2} \vdots 5;5 \vdots 5\) nên \({x^5} - 15{x^2} - x + 5 \vdots 5\) với mọi số nguyên\(x\).

Vậy \(B\) chia hết cho 5 với mọi số nguyên \(x\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved