Đề bài
Biểu diễn miền nghiệm của các hệ bất phương trình sau:
a) \(\left\{ {\begin{array}{*{20}{c}}{x - 3y < 0}\\{x + 2y > - 3}\\{x + y < 2}\end{array}} \right.\) b) \(\left\{ {\begin{array}{*{20}{c}}{x - 2y \le 3}\\{3x + 2y \ge 9}\\{x + y \le 6}\\{x \ge 1}\end{array}} \right.\) c) \(\left\{ {\begin{array}{*{20}{c}}{x + 2y \le 2}\\{x + 2y \ge - 2}\\{x - 2y \le 2}\\{x - 2y \ge - 2}\end{array}} \right.\)
Phương pháp giải - Xem chi tiết
Xác định miền nghiệm của từng bpt. Miền nghiệm của hệ bpt là miền giao của các miền nghiệm ấy.
Biểu diễn miền nghiệm của bpt \(ax + by < c\)
Bước 1: Vẽ đường thẳng \(d:ax + by = c\)
Bước 2: Lấy một điểm \(M\left( {{x_o};{y_o}} \right)\) không thuộc d (ta thường lấy gốc tọa độ O nếu \(c \ne 0\)). Tính \(a{x_o} + b{y_o}\) và so sánh với c
Bước 3: Kết luận
Nếu \(a{x_o} + b{y_o} < c\)thì nửa mặt phẳng (không kể đường thẳng d) chứa điểm M là miền nghiệm của bất phương trình \(ax + by < c\)
Nếu \(a{x_o} + b{y_o} > c\) thì nửa mặt phẳng (không kể d) không chứa điểm M là miền nghiệm của bất phương trình \(ax + by > c\)
Lời giải chi tiết
a) Vẽ các đường thẳng:
\({d_1}{\rm{:}}\;x--3y = 0\) đi qua hai điểm có tọa độ (0; 0) và (3; 1).
\({d_2}{\rm{:}}\;x + 2y = - 3\) đi qua hai điểm có tọa độ (– 3; 0) và (1; – 2).
\({d_3}{\rm{:}}\;x + y = 2\) đi qua hai điểm có tọa độ (2; 0) và (0; 2).
Xét điểm A(1;0), không thuộc \({d_1},{d_2},{d_3}.\)
\(1 - 3.0 = 1 > 0 \Rightarrow A(1;0)\) không thuộc miền nghiệm của BPT \(x - 3y < 0\)
\(1 + 2.0 = 1 > - 3 \Rightarrow A(1;0)\) thuộc miền nghiệm của BPT \(x + 2y > - 3\)
\(1 + 0 = 1 < 2 \Rightarrow A(1;0)\) thuộc miền nghiệm của BPT \(x + y < 2\)
Biểu diễn miền nghiệm của từng bpt và gạch bỏ các miền không là nghiệm, ta được:
Miền nghiệm của hệ bpt là miền không gạch (không kể các bờ) trong hình trên.
b) Vẽ các đường thẳng:
d1: x – 2y = 3 đi qua hai điểm có tọa độ là (3; 0) và (1; – 1).
d2: 3x + 2y = 9 đi qua hai điểm (3; 0) và (1; 3).
d3: x + y = 6 đi qua hai điểm (6; 0) và (0; 6).
d4: x = 1 song song với trục tung và đi qua điểm (1; 0).
Xét điểm O(0;0), không thuộc \({d_1},{d_2},{d_3},{d_4}.\)
\(0 - 2.0 = 0 \le 3 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x - 2y \le 3\)
\(3.0 + 2.0 < 9 \Rightarrow O(0;0)\) không thuộc miền nghiệm của BPT \(3x + 2y \ge 9\)
\(0 + 0 = 0 \le 6 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x + y \le 6\)
\(0 < 1 \Rightarrow O(0;0)\) không thuộc miền nghiệm của BPT \(x \ge 1\)
Biểu diễn miền nghiệm của từng bpt và gạch bỏ các miền không là nghiệm, ta được:
Miền nghiệm của hệ BPT là miền tứ giác ABCD (kể cả các cạnh) với A(1;3), B(1;5), C(5;1), D(3;0).
c) Vẽ các đường thẳng:
d1: x + 2y = 2 đi qua hai điểm có tọa độ là (2; 0) và (0; 1).
d2: x + 2y = – 2 đi qua hai điểm có tọa độ là (– 2; 0) và (0; – 1).
d3: x – 2y = 2 đi qua hai điểm có tọa độ là (2; 0) và (0; – 1).
d4: x – 2y = – 2 đi qua hai điểm có tọa độ là (–2; 0) và (0; 1).
Xét điểm O(0;0), không thuộc \({d_1},{d_2},{d_3},{d_4}.\)
\(0 + 2.0 = 0 \le 2 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x + 2y \le 2\)
\(0 + 2.0 = 0 \ge - 2 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x + 2y \ge - 2\)
\(0 - 2.0 = 0 \le 2 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x - 2y \le 2\)
\(0 - 2.0 = 0 \ge - 2 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x - 2y \ge - 2\)
Như vậy O(0;0) thuộc miền nghiệm của hệ bpt.
Biểu diễn miền nghiệm của từng bpt và gạch bỏ các miền không là nghiệm, ta được:
Miền nghiệm của hệ BPT là miền tứ giác ABCD (kể cả các cạnh) với A(-2;0), B(0;1), C(2;0), D(0;-1).
Chương 1: Sử dụng bản đồ
Chương 11. Phát triển bền vững và tăng trưởng xanh
Chủ đề 5. Giải quyết vấn đề với sự trợ giúp của máy tính
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chương 4. Ba định luật Newton. Một số lực trong thực tiễn
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10