Giải Bài 26 trang 73 sách bài tập toán 7 - Cánh diều

Đề bài

Cho ∆ABC = ∆MNP. Hai tia phân giác của góc B và C cắt nhau tại O tạo thành góc BOC bằng 120°. Tính tổng số đo các góc MNP và MPN của tam giác MNP.

 

 

Phương pháp giải - Xem chi tiết

Hai tam giác bằng nhau suy ra các góc tương ứng bằng nhau.

 

 

Lời giải chi tiết

 

Vì BO là phân giác của góc ABC nên\(\widehat {ABO} = \widehat {CBO} = \frac{{\widehat {ABC}}}{2}\)

Vì CO là phân giác của góc ACB nên \(\widehat {ACO} = \widehat {BCO} = \frac{{\widehat {ACB}}}{2}\)

Xét DCOB ta có: \(\widehat {BOC} + \widehat {OBC} + \widehat {OCB} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra \(\widehat {OBC} + \widehat {OCB} = 180^\circ  - \widehat {BOC} = 180^\circ  - 120^\circ  = 60^\circ .\)

 Mà \(\widehat {CBO} = \frac{{\widehat {ABC}}}{2},\widehat {BCO} = \frac{{\widehat {ACB}}}{2}.\)

Suy ra \(\frac{{\widehat {ABC}}}{2} + \frac{{\widehat {ACB}}}{2} = 60^\circ \)

 Do đó \(\widehat {ABC} + \widehat {ACB} = 2.60^\circ  = 120^\circ .\)

Mặt khác ∆ABC = ∆MNP nên ta có:

\(\widehat {ABC} = \widehat {MNP}\) và \(\widehat {ACB} = \widehat {MPN}\) (các cặp góc tương ứng).

Suy ra \(\widehat {MNP} + \widehat {MPN} = \widehat {ABC} + \widehat {ACB} = 120^\circ \)

Vậy \(\widehat {MNP} + \widehat {MPN} = 120^\circ \)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved