Giải các phương trình sau :
LG a
\(\left( {4x - 10} \right)\left( {24 + 5x} \right) = 0\)
Phương pháp giải:
Áp dụng phương pháp giải phương trình tích :
\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\left( {4x - 10} \right)\left( {24 + 5x} \right) = 0\)
\(\Leftrightarrow 4x - 10 = 0\) hoặc \(24 + 5x = 0\)
+) Với \(4x - 10 = 0 \Leftrightarrow 4x = 10 \Leftrightarrow x = 2,5\)
+) Với \(24 + 5x = 0 \Leftrightarrow 5x =- 24 \) \(\Leftrightarrow x = - 4,8\)
Vậy phương trình có tập nghiệm \(S = \{2,5;\,-4,8\}.\)
LG b
\(\left( {3,5 - 7x} \right)\left( {0,1x + 2,3} \right) = 0\)
Phương pháp giải:
Áp dụng phương pháp giải phương trình tích :
\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\left( {3,5 - 7x} \right)\left( {0,1x + 2,3} \right) = 0\)
\(\Leftrightarrow 3,5 - 7x = 0\) hoặc \(0,1x + 2,3 = 0\)
+) Với \(3,5 - 7x = 0 \Leftrightarrow 3,5 = 7x \) \(\Leftrightarrow x = 0,5\)
+) Với \(0,1x + 2,3 = 0 \Leftrightarrow 0,1x = - 2,3 \) \(\Leftrightarrow x = - 23\)
Vậy phương trình có tập nghiệm \(S = \{0,5;-23\}.\)
LG c
\(\displaystyle \left( {3x - 2} \right)\left[ {{{2\left( {x + 3} \right)} \over 7} - {{4x - 3} \over 5}} \right] = 0\)
Phương pháp giải:
Áp dụng phương pháp giải phương trình tích :
\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\displaystyle \left( {3x - 2} \right)\left[ {{{2\left( {x + 3} \right)} \over 7} - {{4x - 3} \over 5}} \right] = 0\)
\( \Leftrightarrow 3x - 2 = 0\) hoặc \(\displaystyle {{2\left( {x + 3} \right)} \over 7} - {{4x - 3} \over 5} = 0\)
+) Với \(\displaystyle 3x - 2 = 0 \Leftrightarrow 3x = 2 \Leftrightarrow x = {2 \over 3}\)
+) Với \(\displaystyle{{2\left( {x + 3} \right)} \over 7} - {{4x - 3} \over 5} = 0 \)
\(\displaystyle \Leftrightarrow {{2x + 6} \over 7} - {{4x - 3} \over 5} = 0\)
\(\eqalign{ & \Leftrightarrow 5\left( {2x + 6} \right) - 7\left( {4x - 3} \right) = 0 \cr & \Leftrightarrow 10x + 30 - 28x + 21 = 0 \cr & \Leftrightarrow - 18x + 51 = 0 \Leftrightarrow x = {{17} \over 6} \cr} \)
Vậy phương trình có tập nghiệm \(\displaystyle S = \left \{{2 \over 3} ;{{17} \over 6} \right \}.\)
LG d
\(\displaystyle\left( {3,3 - 11x} \right)\left[ {{{7x + 2} \over 5} + {{2\left( {1 - 3x} \right)} \over 3}} \right] \) \(= 0\)
Phương pháp giải:
Áp dụng phương pháp giải phương trình tích :
\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\displaystyle \left( {3,3 - 11x} \right)\left[ {{{7x + 2} \over 5} + {{2\left( {1 - 3x} \right)} \over 3}} \right] = 0\)
\(\displaystyle \Leftrightarrow 3,3 - 11x = 0\) hoặc \( \displaystyle {{7x + 2} \over 5} + {{2\left( {1 - 3x} \right)} \over 3} = 0\)
+) Với \(3,3 - 11x = 0 \Leftrightarrow 3,3 = 11x \) \( \Leftrightarrow x = 0,3\)
+) Với \(\displaystyle {{7x + 2} \over 5} + {{2\left( {1 - 3x} \right)} \over 3} = 0\)
\(\eqalign{ & \Leftrightarrow {{7x + 2} \over 5} + {{2 - 6x} \over 3} = 0 \cr & \Leftrightarrow 3\left( {7x + 2} \right) + 5\left( {2 - 6x} \right) = 0 \cr & \Leftrightarrow 21x + 6 + 10 - 30x = 0 \cr & \Leftrightarrow - 9x = - 16 \Leftrightarrow x = {{16} \over 9} \cr} \)
Vậy phương trình có tập nghiệm \(\displaystyle S = \left \{0,3;{{16} \over 9} \right \}.\)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Giáo dục công dân lớp 8
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Giáo dục công dân lớp 8
Bài 16: Quyền sở hữu tài sản và nghĩa vụ tôn trọng tài sản của người khác
Chủ đề 3. Trái tim người thầy
Chương 3. Mol và tính toán hóa học
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8