HÌNH HỌC SBT - TOÁN 11

Bài 2.8 trang 64 SBT hình học 11

Đề bài

Cho hai mặt phẳng \((\alpha)\) và \((\beta)\) cắt nhau theo giao tuyến \(d\). Trong \((\alpha)\) lấy hai điểm \(A\) và \(B\) sao cho \(AB\) cắt \(d\) tại \(I\). \(O\) là một điểm nằm ngoài \((\alpha)\) và \((\beta)\) sao cho \(OA\) và \(OB\) lần lượt cắt \((\beta)\) tại \(A’\) và \(B’\).

a) Chứng minh ba điểm \(I\), \(A’\), \(B’\) thẳng hàng.

b) Trong \((\alpha)\) lấy điểm \(C\) sao cho \(A\), \(B\), \(C\) không thẳng hàng. Giả sử \(OC\) cắt \((\beta)\) tại \(C’\), \(BC\) cắt \(B’C’\) tại \(J\), \(CA\) cắt \(C’A’\) tại \(K\). Chứng minh \(I\), \(J\), \(K\) thẳng hàng.

Phương pháp giải - Xem chi tiết

Để chứng minh ba điểm thẳng hàng ta chứng minh ba điểm đó cùng thuộc hai mặt phẳng phân biệt.

Lời giải chi tiết

 

a) Ta có \(AB\cap d=I\)

Khi đó \(I\in AB, AB\subset (OAB)\Rightarrow I\in (OAB)\) và \(I\in d, d\subset (\beta)\Rightarrow I\in (\beta)\)

Suy ra \(I=(OAB)\cap (\beta)\)

Ta có \(A’=OA\cap (\beta)\)

Khi đó \(A’\in OA, OA\subset (OAB)\)

\(\Rightarrow A’\in (OAB)\) và \(A’\in (\beta)\)

Suy ra \(A’=(OAB)\cap (\beta)\)

Chứng minh tương tự \(B’=(OAB)\cap (\beta)\)

Vậy \(I\), \(A’\), \(B’\) là ba điểm chung của hai mặt phẳng \((OAB)\) và \((\beta)\) nên chúng thẳng hàng.

b) Ta có \(I=AB\cap d\) khi đó \(I\in AB, AB\subset (ABC)\Rightarrow I\in (ABC)\)

Và \(I\in d, d\subset (\beta)\Rightarrow I\in (\beta)\) mà \(A’, B’, C’\in (\beta)\) \(\Rightarrow(A’B’C’)\) là \((\beta)\) nên \(I\in (A’B’C’)\)

Suy ra \(I\in (ABC)\cap (A’B’C’)\)

Ta có \(BC\cap B’C’=J\)

Khi đó \(J\in BC, BC\subset (ABC)\Rightarrow J\in (ABC)\) và \(J\in B’C’, B’C’\subset (A’B’C’)\)

\(\Rightarrow J\in (A’B’C’)\)

Suy ra \(J\in (ABC)\cap (A’B’C’)\)

Tương tự ta có \(K\in (ABC)\cap (A’B’C’)\)

Vậy \(I\), \(J\), \(K\) là ba điểm chung của hai mặt phẳng \((ABC)\) và \((A’B’C’)\) nên chúng thẳng hàng.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved