Bài 1. Thu thập và phân loại dữ liệu
Bài 2. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
Bài 3. Phân tích và xử lí dữ liệu thu được ở dạng bảng, biểu đồ
Bài 4. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
Bài 5. Xác suất thực nghiệm của một biến cố trong một số trò chơi đơn giản
Bài tập cuối chương VI
Bài 1. Định lí Thalès trong tam giác
Bài 2. Ứng dụng của định lí Thalès trong tam giác
Bài 3. Đường trung bình của tam giác
Bài 4. Tính chất đường phân giác của tam giác
Bài 5. Tam giác đồng dạng
Bài 6. Trường hợp đồng dạng thứ nhất của tam giác
Bài 7. Trường hợp đồng dạng thứ hai của tam giác
Bài 8. Trường hợp đồng dạng thứ ba của tam giác
Bài 9. Hình đồng dạng
Bài tập cuối chương VIII
1. Nội dung câu hỏi
Quan sát Hình 28 biết \(\widehat{AMN}=\widehat{ABC},\widehat{BAC}=\widehat{BML}\).
a) Chứng minh: \(\Delta AMN\backsim \Delta MBL\).
b) Xác định vị trí của điểm \(M\) trên cạnh \(AB\) để chu vi tam giác \(AMN\) bằng \(\frac{2}{3}\) chu vi tam giác \(ABC\).
2. Phương pháp giải
Dựa vào định nghĩa của tam giác đồng dạng:
Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:
\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).
Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).
Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.
Và công thức tính chu vi tam giác.
3. Lời giải chi tiết
a) Vì \(\widehat{AMN}=\widehat{ABC}\) nên \(MN//BC\). Do đó \(\Delta AMN\backsim \Delta ABC\) (1)
Vì \(\widehat{BAC}=\widehat{BML}\) nên \(ML//AC\). Do đó \(\Delta MBL\backsim \Delta ABC\) (2)
Từ (1) và (2) ta có \(\Delta AMN\backsim \Delta MBL\),
b) Giả sử \(\Delta AMN\backsim \Delta ABC\) với tỉ số đồng dạng \(k\), ta có:
\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}=k\).
→ \(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}=\frac{AM+AN+MN}{AB+AC+BC}=k\) hay (Chu vi tam giác \(AMN\)) : (Chu vi tam giác \(ABC\)) \(=k\).
Do đó để chu vi tam giác \(AMN\) bằng \(\frac{2}{3}\) chu vi tam giác \(ABC\) thì \(AM=\frac{2}{3}AB\).
Ngược lại, dễ thấy nếu \(AM=\frac{2}{3}AB\) thì chu vi tam giác \(AMN\) bằng \(\frac{2}{3}\) tam giác \(ABC\).
Vậy vị trí của điểm \(M\) trên cạnh \(AB\) để chu vi tam giác \(AMN\) bằng chu vi tam giác \(ABC\) là \(AM=\frac{2}{3}AB\).
Đề thi học kì 1 mới nhất có lời giải
Phần Địa lí
PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2
PHẦN II. NHIỆT HỌC
SGK Toán 8 - Chân trời sáng tạo tập 2
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8