1. Nội dung câu hỏi
Cho mặt phẳng \(\left( P \right)\) song song với mặt phẳng \(\left( Q \right)\). Khẳng định nào sau đây là đúng?
A. Mọi đường thẳng nằm trong \(\left( P \right)\) đều song song với mọi đường thẳng nằm trong \(\left( Q \right)\).
B. \(\left( P \right)\) song song với mọi đường thẳng nằm trong \(\left( Q \right)\).
C. Nếu mặt phẳng \(\left( R \right)\) song song với mặt phẳng \(\left( P \right)\) thì mặt phẳng \(\left( R \right)\) song song với mặt phẳng \(\left( Q \right)\).
D. Nếu đường thẳng \(a\) song song với mặt phẳng \(\left( Q \right)\) thì đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\).
2. Phương pháp giải
Sử dụng các tính chất về hai mặt phẳng song song.
3. Lời giải chi tiết
Đáp án A sai. Ví dụ, chọn 2 đường thẳng \(a\) và \(a'\) cắt mặt phẳng \(\left( P \right)\) lần lượt tại \(A\) và \(A'\); cắt \(\left( Q \right)\) lần lượt tại \(B\) và \(B'\). Lấy một điểm \(C' \in \left( Q \right)\) sao cho ba điểm \(A'\), \(B'\), \(C'\) không thẳng hàng. Ta kết luận rằng hai đường thẳng \(AB\) và \(A'C'\) là hai đường thẳng chéo nhau, do đó chúng không song song với nhau.
Đáp án B đúng, do hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau, nên chúng không có điểm chung. Do đó mọi đường thẳng nằm trong \(\left( Q \right)\) đều không có điểm chung với \(\left( P \right)\). Điều này suy ra mọi đường thẳng nằm trong \(\left( Q \right)\) đều song song với \(\left( P \right)\).
Đáp án C sai. Với trường hợp mặt phẳng \(\left( R \right)\) trùng với mặt phẳng \(\left( Q \right)\), ta vẫn có mặt phẳng \(\left( R \right)\) song song với mặt phẳng \(\left( P \right)\).
Đáp án D sai. Với trường hợp \(a\) nằm trong \(\left( P \right)\), ta vẫn có \(a\) song song với mặt phẳng \(\left( Q \right)\).
Đáp án cần chọn là đáp án B.
Unit 12: Celebrations
ĐỀ THI HỌC KÌ 1 - ĐỊA LÍ 11
Unit 6: Transitions
Chủ đề 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Chương 1: Cân bằng hóa học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11