1. Nội dung câu hỏi
Cho hai hình bình hành \(ABCD\) và \(ABEF\) nằm trong hai mặt phẳng phân biệt. Khẳng định nào sau đây là đúng?
A. \(\left( {ADF} \right)\parallel \left( {BCE} \right)\)
B. \(AD\parallel \left( {BEF} \right)\)
C. \(\left( {ABC} \right)\parallel \left( {DEF} \right)\)
D. \(EC\parallel \left( {ABD} \right)\)
2. Phương pháp giải
Sử dụng các tính chất về đường thẳng song song với mặt phẳng, hai mặt phẳng song song.
3. Lời giải chi tiết
Do \(ABCD\) là hình bình hành nên \(AD\parallel BC\). Mà \(BC \subset \left( {BCE} \right)\), ta suy ra \(AD\parallel \left( {BCE} \right)\). Chứng minh tương tự ta có \(AF\parallel \left( {BCE} \right)\). Như vậy \(\left( {ADF} \right)\parallel \left( {BCE} \right)\).
Ta có \(A \in AD\), \(A \in \left( {BEF} \right)\) nên suy ra \(AD\) và \(\left( {BEF} \right)\) có điểm chung, tức là chúng không song song với nhau.
Tương tự, ta cũng chứng minh được \(EC\) và \(\left( {ABD} \right)\) không song song với nhau.
Do \(AB\parallel CD\), \(AB\parallel EF\) nên \(CD\parallel EF\), tức là tứ giác \(CDFE\) là hình bình hành.
Vì \(C \in \left( {ABC} \right)\), \(C \in \left( {DEF} \right)\), nên hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {DEF} \right)\) có điểm chung, tức là chúng không song song với nhau.
Đáp án đúng là A.
Câu hỏi tự luyện Hóa 11
CHUYÊN ĐỀ 1. LỊCH SỬ NGHỆ THUẬT TRUYỀN THỐNG VIỆT NAM
Review 2
Dương phụ hành - Cao Bá Quát
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11