1. Nội dung câu hỏi
Cho \(a\), \(b\) là hai đường thẳng phân biệt cắt ba mặt phẳng song song \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) lần lượt tại \(A,{\rm{ }}B,{\rm{ }}C\) và \(A',{\rm{ }}B',{\rm{ }}C'\). Khẳng định nào sau đây là SAI?
A. \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\)
B. \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{C'A'}}{{CA}}\)
C. \(\frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}}\)
D. \(\frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}} = \frac{{AC}}{{A'C'}}\)
2. Phương pháp giải
Sử dụng định lí Thales.
3. Lời giải chi tiết
Áp dụng định lí Thales, ta có \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\). Như vậy, đáp án A đúng. Tương tự đáp án B cũng đúng.
Do \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} \Rightarrow \frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}}\), suy ra đáp án C đúng.
Đáp án D sai vì \(\frac{{AB}}{{BC}} \ne \frac{{AC}}{{A'C'}}\).
Vậy đáp án cần chọn là đáp án D.
Unit 1: Generation gap and Independent life
Chuyên đề II. Truyền thông tin bằng sóng vô tuyến
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
Giáo dục kinh tế
Đề thi học kì 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11