1. Nội dung câu hỏi
Trong mặt phẳng \(\left( P \right)\) cho tam giác \(ABC\). Qua \(A,{\rm{ }}B,{\rm{ }}C\) lần lượt vẽ các tia \(Ax,{\rm{ }}By,{\rm{ }}Cz\) đôi một song song với nhau và không nằm trong mặt phẳng \(\left( P \right)\). Trên các tia \(Ax,{\rm{ }}By,{\rm{ }}Cz\) lần lượt lấy các điểm \(A',{\rm{ }}B',{\rm{ }}C'\) sao cho \(AA' = BB' = CC'\). Chứng minh rằng \(\left( {ABC} \right)\parallel \left( {A'B'C'} \right)\).
2. Phương pháp giải
Chứng minh rằng \(ABB'A'\) là hình bình hành, từ đó suy ra được \(A'B'\parallel \left( {ABC} \right)\).
Chứng minh tương tự ta cũng có \(B'C'\parallel \left( {ABC} \right)\) và suy ra điều phải chứng minh.
3. Lời giải chi tiết
Tứ giác \(ABB'A'\) có \(AA' = BB'\) và \(AA'\parallel BB'\) nên nó là hình bình hành.
Suy ra \(AB\parallel A'B'\). Do \(AB \subset \left( {ABC} \right)\) nên ta kết luận \(A'B'\parallel \left( {ABC} \right)\).
Chứng minh tương tự ta cũng có \(B'C'\parallel \left( {ABC} \right)\).
Như vậy \(\left( {A'B'C'} \right)\parallel \left( {ABC} \right)\). Bài toán được chứng minh.
CHƯƠNG II: DÒNG ĐIỆN KHÔNG ĐỔl
Chủ đề 4. Trách nhiệm với gia đình
Bài 6. Tiết 3: Thực hành: Tìm hiểu sự phân hóa lãnh thổ sản xuất của Hoa Kì - Tập bản đồ Địa lí 11
Projects 1-4: Presentation/Performance
Unit 10: Travel
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11