PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 1

Bài 29 trang 134 Vở bài tập toán 9 tập 1

Đề bài

Cho hai đường tròn \((O;\ 20cm)\) và \((O'; 15cm)\) cắt nhau tại \(A\) và \(B\). Tính đoạn nối tâm \(OO'\), biết rằng \(AB=24cm.\) (Xét hai trường hợp: \(O\) và \(O'\) nằm khác phía đối với \(AB;\ O\) và \(O'\) nằm cùng phía đối với \(AB\)).

Phương pháp giải - Xem chi tiết

Vẽ dây chung của hai đường tròn rồi dùng tính chất đường nối tâm  là đường trung trực của dây chung.

Lời giải chi tiết

Gọi \(I\) là giao điểm của \(OO'\) và \(AB.\) Theo tính chất hai đường tròn cắt nhau, ta có \(OO'\) là đường trung trực của \(AB,\) do đó

\(OO'\bot AB\) và \(AI=IB=\dfrac{AB}{2}\)\(=\dfrac{24}{2}=12\left( cm \right).\)

Tính \(OI:\) Áp dụng định lí Py-ta-go cho tam giác vuông \(AIO,\) ta có

\(O{{I}^{2}}=O{{A}^{2}}-A{{I}^{2}}\)\(={{20}^{2}}-{{12}^{2}}=400-144=256.\)

Suy ra \(OI = 16cm.\)

Tính \(O'I:\) Áp dụng định lí Py-ta-go cho tam giác vuông \(AIO',\) ta có

\(O'{{I}^{2}}=O'{{A}^{2}}-A{{I}^{2}}={{15}^{2}}-{{12}^{2}}\)\(=225-144=81\left( cm \right).\)

Suy ra \(O'I=9cm.\)

Xét hai trường hợp :

a) Nếu \(O\) và \(O'\) nằm khác phía đối với \(AB\) thì

\(OO' = OI + IO' = 16 + 9 = 25\left( {cm} \right).\)

b) Nếu \(O\) và \(O'\) nằm cùng phía đối với \(AB\) thì

\(OO' = OI - IO' = 16 - 9 = 7\left( {cm} \right).\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved