Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Rút gọn
a) \(\dfrac{2}{{{x^2} - {y^2}}}\sqrt {\dfrac{{3{{\left( {x + y} \right)}^2}}}{2}} \) với \(x \ge 0;\,\,y \ge 0;\,\,x \ne y\) .
b) \(\dfrac{2}{{2a - 1}}\sqrt {5{a^2}\left( {1 - 4a + 4{a^2}} \right)} \) với \(a > 0,5. \)
Phương pháp giải - Xem chi tiết
Đưa thừa số ra ngoài dấu căn rồi rút gọn các căn thức đồng dạng
\(p\sqrt A + q\sqrt A - r\sqrt A = \left( {p + q - r} \right)\sqrt A \)
Lời giải chi tiết
a) \(\dfrac{2}{{{x^2} - {y^2}}}\sqrt {\dfrac{{3{{\left( {x + y} \right)}^2}}}{2}} \)\( = \dfrac{{2\left| {x + y} \right|}}{{{x^2} - {y^2}}}\sqrt {\dfrac{3}{2}} \)\( = \dfrac{{x + y}}{{\left( {x + y} \right)\left( {x - y} \right)}}\sqrt {\dfrac{{{2^2}.3}}{2}} \) \( = \dfrac{{\sqrt 6 }}{{x - y}}\) (vì \(x + y > 0\) nên \(\left| {x + y} \right| = x + y\))
b) \(\dfrac{2}{{2a - 1}}\sqrt {5{a^2}\left( {1 - 4a + 4{a^2}} \right)} \)\( = \dfrac{{2\left| a \right|}}{{2a - 1}}\sqrt {5{{\left( {1 - 2a} \right)}^2}} \) \( = \dfrac{{2\left| a \right|.\left| {1 - 2a} \right|}}{{2a - 1}} \cdot \sqrt 5 \)
Vì \(a > \dfrac{1}{2}\) nên \(1 - 2a < 0\)
\(\Rightarrow \left| {1 - 2a} \right| = - \left( {1 - 2a} \right) = 2a - 1\).
Vì \(a > \dfrac{1}{2} > 0\) nên \(\left| a \right| = a\)
Ta được:
\(\dfrac{{2\left| a \right|.\left| {1 - 2a} \right|}}{{2a - 1}} \cdot \sqrt 5 \) \( = \dfrac{{2a\left( {2a - 1} \right) \cdot \sqrt 5 }}{{2a - 1}}\) \( = 2\sqrt 5 a\)
Đề thi vào 10 môn Văn Lào Cai
Đề ôn tập học kì 1 – Có đáp án và lời giải
Đề thi vào 10 môn Toán Sóc Trăng
Đề thi vào 10 môn Toán Phú Yên
Đề thi vào 10 môn Toán Hoà Bình