Bài 29 trang 55 SBT toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Một vận động viên bơi lội nhảy cầu (xem hình 5). Khi nhảy, độ cao h từ người đó tới mặt nước (tính bằng mét) phụ thuộc vào khoảng cách \(x\) từ điểm rơi đến chân cầu (tính bằng mét) bởi công thức:

\(h =  - {\left( {x - 1} \right)^2} + 4\)

Hỏi khoảng cách x bằng bao nhiêu:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

Khi vận động viên ở độ cao \(3m\)?

Phương pháp giải:

Thay \(h=3m\) vào phương trình \(h =  - {\left( {x - 1} \right)^2} + 4\), từ đó ta tìm \(x\).

Lời giải chi tiết:

Khi \(h = 3m\) ta có:

\(\eqalign{
& 3 = - {\left( {x - 1} \right)^2} + 4 \cr&\Leftrightarrow {\left( {x - 1} \right)^2} - 1 = 0 \cr 
& \Leftrightarrow {x^2} - 2x + 1 - 1 = 0\cr& \Leftrightarrow x\left( {x - 2} \right) = 0\cr& \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\cr} \)

Vậy \(x = 0\, m\) hoặc \(x = 2\,m\).

LG b

LG b

Khi vận động viên chạm mặt nước?

Phương pháp giải:

Khi chạm mặt nước ta có \(h=0\), thay \(h=0\) vào phương trình \(h =  - {\left( {x - 1} \right)^2} + 4\) từ đó ta tìm \(x\).

* Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)

+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:

\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)

+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).

+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.

Lời giải chi tiết:

Khi vận động viên chạm mặt nước ta có \(h = 0\). 

\(\eqalign{
& \Leftrightarrow - {\left( {x - 1} \right)^2} + 4 = 0\cr& \Leftrightarrow {\left( {x - 1} \right)^2} - 4 = 0\cr& \Leftrightarrow {x^2} - 2x +1- 4 = 0\cr& \Leftrightarrow {x^2} - 2x - 3 = 0 \cr 
& \Delta ' = b{'^2} - ac= {\left( { - 1} \right)^2} - 1.\left( { - 3} \right)  = 4 > 0 \cr 
& \sqrt {\Delta '} = \sqrt 4 = 2 \cr 
& {x_1} =\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}= {{1 + 2} \over 1} = 3 \cr 
& {x_2} =\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}= {{1 - 2} \over 1} = - 1 \cr} \)

Vì khoảng cách không âm nên \(x = 3\,m\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi