SBT Toán 11 - Chân trời sáng tạo tập 1

Câu hỏi 3 - Mục Bài tập trang 112

1. Nội dung câu hỏi

Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD sao cho EF cắt BC tại I, AD cắt EG tại H. Chứng minh rằng ba đường thẳng CD, IG, HF cùng đi qua một điểm.


2. Phương pháp giải

Sử dụng kiến thức về chứng minh ba đường thẳng đồng quy để chứng minh ba đường thẳng đồng quy:

+ Gọi O là giao điểm của HF và IG

+ Chứng minh O thuộc CD.

 

3. Lời giải chi tiết 

Gọi O là giao điểm của HF và IG.

Ta có: \(O \in HF\), mà \(HF \subset \left( {ACD} \right) \Rightarrow O \in \left( {ACD} \right)\)

Vì \(O \in IG\), mà \(IG \subset \left( {BCD} \right) \Rightarrow O \in \left( {BCD} \right)\)

Do đó, \(O \in \left( {BCD} \right) \cap \left( {ACD} \right)\)

Mặt khác, CD là giao tuyến của hai mặt phẳng (ACD) và (BCD)

Do đó, \(O \in CD\). Vậy ba đường thẳng CD, IG, HF cùng đi qua một điểm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved