Đề bài
Giải các phương trình bậc hai sau:
a) \({x^2} - 10x + 24 \ge 0\) b) \( - 4{x^2} + 28x - 49 \le 0\)
c) \({x^2} - 5x + 1 > 0\) d) \(9{x^2} - 24x + 16 \le 0\)
e) \(15{x^2} - x - 2 < 0\) g) \( - {x^2} + 8x - 17 > 0\)
h) \( - 25{x^2} + 10x - 1 < 0\) i) \(4{x^2} + 4x + 7 \le 0\)
Phương pháp giải - Xem chi tiết
Bước 1: Tìm nghiệm của tam thức bậc hai có trong bất đẳng thức
Bước 2: Xác định dấu của tam thức
Lời giải chi tiết
a) Tam thức \({x^2} - 10x + 24\) có \(a = 1 > 0\) và hai nghiệm \({x_1} = 4;{x_2} = 6\)
Suy ra \({x^2} - 10x + 24 \ge 0\) khi và chỉ khi \(\left( { - \infty ;4} \right] \cup \left[ {6; + \infty } \right)\)
Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ;4} \right] \cup \left[ {6; + \infty } \right)\)
b) Tam thức \( - 4{x^2} + 28x - 49\) có \(a = - 4 < 0\) và nghiệm kép \({x_1} = {x_2} = \frac{7}{2}\)
Suy ra \( - 4{x^2} + 28x - 49 \le 0\) với mọi \(x \in \mathbb{R}\)
Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)
c) Tam thức \({x^2} - 5x + 1\) có \(a = 1 > 0\) và hai nghiệm \({x_1} = \frac{{5 - \sqrt {21} }}{2};{x_2} = \frac{{5 + \sqrt {21} }}{2}\)
Suy ra \({x^2} - 5x + 1 > 0\) khi và chỉ khi \(\left( { - \infty ;\frac{{5 - \sqrt {21} }}{2}} \right) \cup \left( {\frac{{5 + \sqrt {21} }}{2}; + \infty } \right)\)
Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ;\frac{{5 - \sqrt {21} }}{2}} \right) \cup \left( {\frac{{5 + \sqrt {21} }}{2}; + \infty } \right)\)
d) Tam thức \(9{x^2} - 24x + 16\) có \(a = 9 > 0\) và nghiệm kép \({x_1} = {x_2} = \frac{4}{3}\)
Do đó \(9{x^2} - 24x + 16 \ge 0\) với mọi \(x \in \mathbb{R}\)
Suy ra \(9{x^2} - 24x + 16 \le 0\) có nghiệm khi \(9{x^2} - 24x + 16 = 0 \Leftrightarrow x = \frac{4}{3}\)
Vậy tập nghiệm của bất phương trình là \(\left\{ {\frac{4}{3}} \right\}\)
e) Tam thức \(15{x^2} - x - 2\) có \(a = 15 > 0\) và hai nghiệm \({x_1} = - \frac{1}{3};{x_2} = \frac{2}{5}\)
Suy ra \(15{x^2} - x - 2 < 0\) khi và chỉ khi \(\left( { - \frac{1}{3};\frac{2}{5}} \right)\)
Vậy tập nghiệm của bất phương trình là \(\left( { - \frac{1}{3};\frac{2}{5}} \right)\)
g) Tam thức \( - {x^2} + 8x - 17\) có \(a = - 1 < 0\) và \(\Delta = - 4 < 0\)
Do đó \( - {x^2} + 8x - 17 \le 0\) với mọi \(x \in \mathbb{R}\)
Suy ra không có giá trị x thỏa mãn bất phương trình \( - {x^2} + 8x - 17 > 0\)
Vậy bất phương trình đã cho vô nghiệm
h) Tam thức \( - 25{x^2} + 10x - 1\) có \(a = - 25 < 0\) và nghiệm kép \({x_1} = {x_2} = \frac{1}{5}\)
Do đó \( - {x^2} + 8x - 17 \le 0\) với mọi \(x \in \mathbb{R}\)
Suy ra \( - 25{x^2} + 10x - 1 < 0\) khi và chỉ khi \(x \ne \frac{1}{5}\)
Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{5}} \right\}\)
i) Tam thức \(4{x^2} + 4x + 7\) có \(a = 4 > 0\) và \(\Delta = - 96 < 0\)
Suy ra không có giá trị nào của x để \(4{x^2} + 4x + 7 \le 0\)
Vậy bất phương trình đã cho vô nghiệm
Soạn Văn 10 Cánh Diều tập 2 - chi tiết
Unit 6. Destinations
Chương VII. Biến dạng của vật rắn. Áp suất chất
Chủ đề 1. Lịch sử và Sử học
Công nghệ trồng trọt
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10