PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

Bài 3 trang 5 SBT toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f
LG g

Trong mỗi trường hợp sau hãy tìm giá trị của \(m\) để:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f
LG g

LG a

LG a

Điểm \(M\left( {1;0} \right)\) thuộc đường thẳng \(mx - 5y = 7\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(M\left( {1; 0} \right)\) thuộc đường thẳng \(mx - 5y = 7\) nên ta có:

\(m.1 - 5.0 = 7\)\( \Leftrightarrow m = 7\)

Vậy với \(m = 7\) thì đường thẳng \(mx - 5y = 7\) đi qua điểm \(M\left( {1;0} \right)\)

LG b

LG b

Điểm \(N\left( {0; - 3} \right)\) thuộc đường thẳng \(2,5x + my = -21\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(N\left( {0; - 3} \right)\) thuộc đường thẳng \(2,5x + my = -21\) nên ta có: \(2,5.0 + m.\left( { - 3} \right) =  - 21\) \( \Leftrightarrow m = 7\)

Vậy với \(m = 7\) thì đường thẳng \(2,5x + my = -21\) đi qua \(N\left( {0; - 3} \right)\)

LG c

LG c

Điểm \(P\left( {5; - 3} \right)\) thuộc đường thẳng  \(mx + 2y = -1\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(P\left( {5; - 3} \right)\) thuộc đường thẳng \(mx + 2y =  - 1\) nên  ta có: \(m.5 +2.\left( { - 3} \right) =  - 1\) \( \Leftrightarrow m = 1\)

Vậy với \(m = 1\) thì đường thẳng \(mx + 2y =  - 1\) đi qua điểm \(P\left( {5; - 3} \right)\)

LG d

LG d

Điểm \(P\left( {5; - 3} \right)\) thuộc đường thẳng \(3x – my = 6\).

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(P\left( {5; - 3} \right)\) thuộc đường thẳng \(3x - my = 6\) nên ta có: \(3.5 - m.\left( { - 3} \right) = 6 \Leftrightarrow 3m =  - 9\) \( \Leftrightarrow m =  - 3\)

Vậy với \(m= - 3\) thì đường thẳng \(3x - my = 6\) đi qua điểm \(P\left( {5; - 3} \right)\)

LG e

LG e

Điểm \(Q\left( {0,5; - 3} \right)\) thuộc đường thẳng \(mx + 0y = 17,5\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(Q\left( {0,5; - 3} \right)\) thuộc đường thẳng \(mx + 0y = 17,5\) nên ta có: \(m.0,5 + 0.\left( { - 3} \right) = 17,5 \Leftrightarrow m = 35\)

Vậy với \(m = 35\) thì đường thẳng \(mx + 0y = 17,5\) đi qua điểm \(Q\left( {0,5; - 3} \right)\)

LG f

LG f

Điểm \(S\left( {4;0,3} \right)\) thuộc đường thẳng \(0x + my = 1,5\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(S\left( {4;0,3} \right)\) thuộc đường thẳng \(0x + my = 1,5\) nên ta có:  \(0.4 + m.0,3 = 1,5 \Leftrightarrow m = 5\)

Vậy với \(m = 5\) thì đường thẳng \(0x + my = 1,5\) đi qua điểm \(S\left( {4;0,3} \right)\)

LG g

LG g

Điểm \(A\left( {2; - 3} \right)\) thuộc đường thẳng \((m – 1)x + (m + 1)y = 2m + 1\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(A\left( {2; - 3} \right)\) thuộc đường thẳng \(\left( {m - 1} \right)x + \left( {m + 1} \right)y = 2m + 1\) nên  ta có:

\(\eqalign{
& 2\left( {m - 1} \right) + \left( {m + 1} \right).\left( { - 3} \right) = 2m + 1 \cr 
& \Leftrightarrow 2m - 2 - 3m - 3 = 2m + 1 \cr 
& \Leftrightarrow 3m + 6 = 0 \cr 
& \Leftrightarrow m = - 2 \cr} \)

Vậy với \(m = -2\) thì đường thẳng \(\left( {m - 1} \right)x + \left( {m + 1} \right)y = 2m + 1\) đi qua điểm \(A\left( {2; - 3} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved