Đề bài
Xác định tâm sai, tiêu điểm và đường chuẩn tương ứng của mỗi đường conic sau:
a) \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{12}} = 1\)
b) \(\frac{{{x^2}}}{{14}} - \frac{{{y^2}}}{2} = 1\)
c) \({y^2} = 7x\)
Phương pháp giải - Xem chi tiết
a) Elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)
+ Tâm sai: \(e = \frac{c}{a}\)
+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0),\)
+ Đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\), \({\Delta _2}:x - \frac{a}{e} = 0\)
b) Hypebol (H) \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)
+ Tâm sai: \(e = \frac{c}{a}\)
+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0),\)
+ Đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\), \({\Delta _2}:x - \frac{a}{e} = 0\)
c) Parabol (P) \({y^2} = 2px\)
+ Tâm sai: \(e = 1\)
+ Tiêu điểm: \(F\left( {\frac{p}{2};0} \right)\)
+ Đường chuẩn: \(\Delta :x = - \frac{p}{2}\)
Lời giải chi tiết
a) Elip (E): \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{12}} = 1\) có \(a = 4,b = 2\sqrt 3 \) suy ra \(c = \sqrt {{a^2} - {b^2}} = 2\)
+ Tâm sai: \(e = \frac{c}{a} = \frac{1}{2}\)
+ Tiêu điểm \({F_1}( - 2;0),{F_2}(2;0),\)
+ Đường chuẩn \({\Delta _1}:x + 8 = 0\), \({\Delta _2}:x - 8 = 0\)
b) Hypebol (H) \(\frac{{{x^2}}}{{14}} - \frac{{{y^2}}}{2} = 1\) có \(a = \sqrt {14} ,b = \sqrt 2 \) suy ra \(c = \sqrt {{a^2} + {b^2}} = 4\)
+ Tâm sai: \(e = \frac{c}{a} = \frac{{2\sqrt {14} }}{7}\)
+ Tiêu điểm \({F_1}( - 4;0),{F_2}(4;0),\)
+ Đường chuẩn \({\Delta _1}:x + \frac{7}{2} = 0\), \({\Delta _2}:x - \frac{7}{2} = 0\)
c) Parabol (P) \({y^2} = 7x\) có \(2p = 7\) hay \(p = \frac{7}{2}\)
+ Tâm sai: \(e = 1\)
+ Tiêu điểm: \(F\left( {\frac{7}{4};0} \right)\)
+ Đường chuẩn: \(\Delta :x = - \frac{7}{4}\)
Dưới bóng hoàng lan
Chủ đề 3. Một số nền văn minh thế giới thời kì cổ - trung đại
Unit 8: Science
Chương 1. Lịch sử và sử học, vai trò của sử học
Chương 2. Bảng tuần hoàn các nguyên tố hóa học và định luật tuần hoàn
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10