Đề bài
a) Cho tam giác ABC. Hãy nêu cách vẽ đường thẳng a đi qua đỉnh A và song song với BC, cách vẽ đường thẳng b đi qua B và song song với AC.
b) Có thể vẽ được bao nhiêu đường thẳng a, bao nhiêu đường thẳng b? Vì sao?
Phương pháp giải - Xem chi tiết
Ta sử dụng tiên đề Eculid và các tính chất 2 góc so le trong, đồng vị để vẽ hình.
Lời giải chi tiết
a) Ta vẽ đường thẳng xy đi qua A sao cho \(\widehat {xAB}\)=\(\widehat {ABC}\)
Vì \(\widehat {xAB}\)=\(\widehat {ABC}\) mà hai góc này ở vị trí so le trong
Nên xy // BC.
Vậy đường thẳng xy là đường thẳng cần vẽ đi qua A và song song với BC.
Ta vẽ đường thẳng zt đi qua B sao cho \(\widehat {tBC}\)=\(\widehat {BCA}\)
Vì \(\widehat {tBC}\)=\(\widehat {BCA}\) mà hai góc này ở vị trí so le trong
Nên zt // AC.
Vậy đường thẳng zt là đường thẳng cần vẽ đi qua B và song song với AC.
b) Theo tiên đề Euclid ta có qua một điểm nằm ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.
Vậy ta chỉ vẽ được một đường thẳng a và một đường thẳng b.
Cumulative review
Soạn Văn 7 Kết nối tri thức tập 1 - siêu ngắn
Chương 2. Lâm nghiệp
Đề khảo sát chất lượng đầu năm
Bài 11: Tự tin
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7