Giải bài 3 trang 94 sách bài tập toán 10 - Chân trời sáng tạo

Đề bài

Cho tam giác đều ABC cạnh a. Tính độ dài của các vectơ \(\overrightarrow {AB}  + \overrightarrow {BC} \) và \(\overrightarrow {AB}  - \overrightarrow {BC} \)

Phương pháp giải - Xem chi tiết

          Bước 1: Xác định vectơ tổng và vectơ hiệu dựa vào các quy tắc cộng, trừ vectơ

          Bước 2: Xác định độ dài các cạnh dưới dấu vectơ đã tìm được ở bước 1

Lời giải chi tiết

Ta có:  \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC}  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\)

\(\overrightarrow {AB}  - \overrightarrow {BC}  = \overrightarrow {AB}  + \overrightarrow {CB} \)

Từ B kẻ \(\overrightarrow {BD}  = \overrightarrow {CB} \), suy ra \(\overrightarrow {AB}  - \overrightarrow {BC}  = \overrightarrow {AB}  + \overrightarrow {CB}  = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)

\( \Rightarrow \left| {\overrightarrow {AB}  - \overrightarrow {BC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Áp dụng định lí côsin ta có \(AD = \sqrt {A{B^2} + B{D^2} - 2.AB.BD.\cos \widehat {ABD}}  = \sqrt {{a^2} + {a^2} - 2.a.a.\cos 120^\circ }  = a\sqrt 3 \)

Vậy độ dài của các vectơ \(\overrightarrow {AB}  + \overrightarrow {BC} \) và \(\overrightarrow {AB}  - \overrightarrow {BC} \) lần lượt là a và \(a\sqrt 3 \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved