Đề bài
Cho tam giác đều ABC cạnh a. Tính độ dài của các vectơ \(\overrightarrow {AB} + \overrightarrow {BC} \) và \(\overrightarrow {AB} - \overrightarrow {BC} \)
Phương pháp giải - Xem chi tiết
Bước 1: Xác định vectơ tổng và vectơ hiệu dựa vào các quy tắc cộng, trừ vectơ
Bước 2: Xác định độ dài các cạnh dưới dấu vectơ đã tìm được ở bước 1
Lời giải chi tiết
Ta có: \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \Rightarrow \left| {\overrightarrow {AB} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\)
\(\overrightarrow {AB} - \overrightarrow {BC} = \overrightarrow {AB} + \overrightarrow {CB} \)
Từ B kẻ \(\overrightarrow {BD} = \overrightarrow {CB} \), suy ra \(\overrightarrow {AB} - \overrightarrow {BC} = \overrightarrow {AB} + \overrightarrow {CB} = \overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} \)
\( \Rightarrow \left| {\overrightarrow {AB} - \overrightarrow {BC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)
Áp dụng định lí côsin ta có \(AD = \sqrt {A{B^2} + B{D^2} - 2.AB.BD.\cos \widehat {ABD}} = \sqrt {{a^2} + {a^2} - 2.a.a.\cos 120^\circ } = a\sqrt 3 \)
Vậy độ dài của các vectơ \(\overrightarrow {AB} + \overrightarrow {BC} \) và \(\overrightarrow {AB} - \overrightarrow {BC} \) lần lượt là a và \(a\sqrt 3 \)
Unit 2: Entertainment and Leisure
Chương 3. Liên kết hóa học
Đề kiểm tra học kì 2
Huyện Trìa, Đề Hầu, Thầy Nghêu mắc lỡm Thị Hến
Đề thi giữa kì 2
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10